
The Annals of Probability
2015, Vol. 43, No. 6, 3006–3051
DOI: 10.1214/14-AOP954
© Institute of Mathematical Statistics, 2015

MOMENTS AND GROWTH INDICES FOR THE NONLINEAR
STOCHASTIC HEAT EQUATION WITH ROUGH

INITIAL CONDITIONS1

BY LE CHEN AND ROBERT C. DALANG

École Polytechnique Fédérale de Lausanne

We study the nonlinear stochastic heat equation in the spatial domain R,
driven by space–time white noise. A central special case is the parabolic An-
derson model. The initial condition is taken to be a measure on R, such as the
Dirac delta function, but this measure may also have noncompact support and
even be nontempered (e.g., with exponentially growing tails). Existence and
uniqueness of a random field solution is proved without appealing to Gron-
wall’s lemma, by keeping tight control over moments in the Picard iteration
scheme. Upper bounds on all pth moments (p ≥ 2) are obtained as well as
a lower bound on second moments. These bounds become equalities for the
parabolic Anderson model when p = 2. We determine the growth indices in-
troduced by Conus and Khoshnevisan [Probab. Theory Related Fields 152
(2012) 681–701].

1. Introduction. The stochastic heat equation⎧⎨⎩
(

∂

∂t
− ν

2

∂2

∂x2

)
u(t, x) = ρ

(
u(t, x)

)
Ẇ (t, x), x ∈ R, t ∈ R

∗+,

u(0, ·) = μ(·),
(1.1)

where Ẇ is space–time white noise, ρ(u) is globally Lipschitz, μ is the initial
data, and R

∗+ =]0,∞[, has been intensively studied during the last three decades
by many authors: See [2–5, 8–10, 16, 19] for the intermittency problem, [14, 15]
for probabilistic potential theory, [26, 27] for regularity of the solution and [12, 22,
23, 25, 28] for several other properties. The important special case ρ(u) = λu is
called the parabolic Anderson model [5]. Our work focuses on (1.1) with general
deterministic initial data μ, and we study how the initial data affects the moments
and asymptotic properties of the solution.

For the existence of random field solutions (see Definition 2.1 below) to (1.1),
the case where the initial data μ is a bounded and measurable function is covered
by the classical theory of Walsh [29]. Initial data that is more irregular than this
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also appears the literature. For instance, when μ is a positive Borel measure on R

such that

sup
t∈[0,T ]

sup
x∈R

√
t
(
μ ∗ Gν(t,◦))(x) < ∞ for all T > 0,(1.2)

where ∗ denotes convolution in the spatial variable and

Gν(t, x) := 1√
2πνt

exp
{
− x2

2νt

}
, (t, x) ∈ R

∗+ ×R.(1.3)

Bertini and Cancrini [3] gave an ad-hoc definition of solution for the parabolic
Anderson model via a smoothing of the space–time white noise and a Feynman–
Kac type formula. Their analysis depended heavily on properties of the local times
of Brownian bridges. Recently, Conus and Khoshnevisan [9] have constructed a
weak solution defined through certain norms on random fields. In particular, their
solution is defined for almost all (t, x), but not at specific (t, x). Their initial data
has to verify certain technical conditions, which are satisfied by the Dirac delta
function in some of their cases. More recently, Conus, Joseph, Khoshnevisan and
Shiu [8] also studied random field solutions. In particular, they require the initial
data to be a finite measure of compact support.

After the basic questions of existence, the asymptotic properties of the solution
are of particular interest, in part because the solution exhibits intermittency prop-
erties. More precisely, define the upper and lower Lyapunov exponents as follows:

mp(x) := lim sup
t→+∞

logE[|u(t, x)|p]
t

,

(1.4)

mp(x) := lim inf
t→+∞

logE[|u(t, x)|p]
t

.

When the initial data is constant, these two exponents do not depend on x. In this
case, following Bertini and Cancrini [3], we say that the solution is intermittent if
mn := mn = mn for all n ∈N and the following strict inequalities are satisfied:

m1 <
m2

2
< · · · < mn

n
< · · · .(1.5)

Carmona and Molchanov gave the following definition [5], Definition III.1.1, on
page 55.

DEFINITION 1.1. Let p be the smallest integer for which mp > 0. If p < ∞,
then we say that the solution u(t, x) exhibits (asymptotic) intermittency of order p,
and if p = 2, then it exhibits full intermittency.

Carmona and Molchanov [5] showed that full intermittency implies the intermit-
tency defined by (1.5) (see [5], Theroem III.1.2, on page 55). This mathematical
definition of intermittency is related to the property that the solutions are close to
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zero in vast regions of space–time but develop high peaks on some small “islands.”
For the parabolic Anderson model, this property has been well studied; see [5, 11]
for a discrete formulation and [3, 16, 19] for the continuous formulation. Further
general discussion of the intermittency property can be found in [30].

When the initial data are not homogeneous, in particular, when they have certain
decrease at infinity, Conus and Khoshnevisan [10] defined the following lower and
upper exponential growth indices:

λ(p) := sup
{
α > 0 : lim sup

t→∞
1

t
sup

|x|≥αt

logE
(∣∣u(t, x)

∣∣p) > 0
}
,(1.6)

λ(p) := inf
{
α > 0 : lim sup

t→∞
1

t
sup

|x|≥αt

logE
(∣∣u(t, x)

∣∣p) < 0
}
.(1.7)

These quantities are of interest because they give information about the pos-
sible locations of high peaks, and how they propagate away from the origin.
Indeed, if λ(p) = λ(p) =: λ(p), then there will be high peaks at time t in-
side [−λ(p)t, λ(p)t], but no peaks outside of this interval. Conus and Khosh-
nevisan [10] proved in particular that if the initial data μ is a nonnegative, lower
semicontinuous function with compact support of positive Lebesgue measure, then
for the Anderson model,

λ2

2π
≤ λ(2) ≤ λ(2) ≤ λ2

2
.(1.8)

In this paper, we improve the existence result by working under a much weaker
condition on the initial data, namely, μ can be any signed Borel measure over R
such that ∫

R

e−ax2 |μ|(dx) < +∞ for all a > 0,(1.9)

where, from the Jordan decomposition, μ = μ+ − μ− where μ± are two non-
negative Borel measures with disjoint support and |μ| := μ+ + μ−. Note that the
condition (1.9) is equivalent to(|μ| ∗ Gν(t, ·))(x) < +∞ for all t > 0 and x ∈ R,

which means that under condition (1.9), the solution to the homogeneous heat
equation with initial data μ is well defined for all time.

On the one hand, condition (1.9) allows for measure-valued initial data, such
as the Dirac delta function, and Proposition 2.11 below shows that initial data
cannot be extended beyond measures to other Schwartz distributions, even with
compact support. On the other hand, the condition (1.9) permits certain exponential
growth at infinity. For instance, if μ(dx) = f (x)dx, then f (x) = exp(a|x|p), a >

0, p ∈]0,2[ (i.e., exponential growth at ±∞), will satisfy this condition. Note
that the case where the initial data is a continuous function with linear exponential
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growth (i.e., p = 1) has been considered by many authors; see [23, 25, 28] and the
references therein.

Next, we obtain estimates for the moments E(|u(t, x)|p) with both t and x fixed
for all even integers p ≥ 2 (see Theorem 2.4). In particular, for the parabolic An-
derson model, we give an explicit formula for the second moment of the solution.
When the initial data is either Lebesgue measure or the Dirac delta function, we
give explicit formulas for the two-point correlation functions [see (2.27) and (2.30)
below], which can be compared to the integral form given by Bertini and Can-
crini [3], Corollaries 2.4 and 2.5 (see also Remark 2.6 below).

Recently, Borodin and Corwin [4] also obtained the moment formulas for the
parabolic Anderson model in the case where the initial data is the Dirac delta
function. When p = 2, we obtain the same explicit formula. For p > 2, their pth
moments are represented by multiple contour integrals. Our methods are very dif-
ferent from theirs: They approximate the continuous system by a discrete one. Our
formulas allow more general initial data than the Dirac delta function, and are use-
ful for establishing other properties, concerning for instance growth indices and
sample path regularity.

Our proof of existence is based on the standard Picard iteration scheme. The
main difference from the conventional situation is that instead of applying Gron-
wall’s lemma to bound the second moment from above, we keep tight control over
the sequence of second moments in the Picard iteration scheme. In the case of the
parabolic Anderson model, this directly gives an explicit formula, and for more
general functions ρ it gives good bounds. Note that series representations of the
moments are obtained in [17], yielding a Feynman–Kac-type formula.

Concerning growth indices, we improve (1.8) by giving upper bounds on λ(p)

for general functions ρ, and, in the parabolic Anderson model, by showing that
λ(2) = λ(2) = λ2/2 when μ is a nonnegative measure with compact support (see
Theorem 2.12), and we extend this result to a more general class of measure-valued
initial data (not necessarily with compact support). This is possible mainly thanks
to our explicit formula for the second moment. Our result implies in particular
that with regard to the propagation of high peaks, an initial condition with tails
that decrease at a sufficiently high exponential rate [as least as fast as e−β|x| with
β ≥ λ2/(2ν)] produces the same behavior as a compactly supported one.

This paper is organized as follows: All the main results of this paper are stated
in Section 2. In particular, in Section 2.1, we define the notion of random field so-
lution of (1.1), and then show, assuming existence of the solution, that one obtains
readily formulas for the second moments in the case of the Anderson model. Then
we state and prove our theorem on existence, uniqueness and moment estimates,
discuss various particular initial conditions, including Lebesgue measure and the
Dirac delta function, and we show that existence is not possible if the initial condi-
tion is rougher than a measure. In Section 2.2, we state the results about the growth
indices. Proofs of the results in Sections 2.1 and 2.2 are given in Sections 3 and 4,
respectively. Finally, in Section 4.3, we gather various calculations that are used
throughout the paper.
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2. Main results. Let M(R) be the set of locally finite (signed) Borel mea-
sures over R. Let MH(R) be the set of signed Borel measures over R satisfy-
ing (1.9). Denote the solution to the homogeneous equation⎧⎨⎩

(
∂

∂t
− ν

2

∂2

∂x2

)
u(t, x) = 0, x ∈ R, t ∈ R

∗+,

u(0, ·) = μ(·),
(2.1)

by

J0(t, x) := (
μ ∗ Gν(t, ·))(x) =

∫
R

Gν(t, x − y)μ(dy).

2.1. Existence, uniqueness and moments. Let W = {Wt(A),A ∈ Bb(R), t ≥
0} be a space–time white noise defined on a complete probability space (	,F,P ),
where Bb(R) is the collection of Borel measurable sets with finite Lebesgue mea-
sure. Let

Ft = σ
(
Ws(A),0 ≤ s ≤ t,A ∈ Bb(R)

) ∨N , t ≥ 0,

be the natural filtration of W augmented by the σ -field N generated by all P -null
sets in F . In the following, we fix the filtered probability space {	,F, {Ft , t ≥
0},P }. We use ‖ · ‖p to denote the Lp(	)-norm (p ≥ 1). With this setup,
W becomes a worthy martingale measure in the sense of Walsh [29], and∫∫

[0,t]×R
X(s, y)W(ds,dy) is well defined in this reference for a suitable class of

random fields {X(s, y), (s, y) ∈ R+ ×R}.
We can formally rewrite the spde (1.1) in the integral form:

u(t, x) = J0(t, x) + I (t, x),(2.2)

where

I (t, x) :=
∫∫

[0,t]×R

Gν(t − s, x − y)ρ
(
u(s, y)

)
W(ds,dy).

We use the convention that Gν(t, ·) ≡ 0 if t ≤ 0. Hence, [0, t]×R in the stochastic
integral above can be replaced by R+ ×R. In the following, we will use � to denote
the simultaneous convolution in both space and time variables,

DEFINITION 2.1. A process u = (u(t, x), (t, x) ∈R
∗+ ×R) is called a random

field solution to (2.2) if:

(1) u is adapted, that is, for all (t, x) ∈ R
∗+ ×R, u(t, x) is Ft -measurable;

(2) u is jointly measurable with respect to B(R∗+ ×R) ×F ;
(3) (G2

ν � ‖ρ(u)‖2
2)(t, x) < +∞ for all (t, x) ∈ R

∗+ × R, and the function
(t, x) → I (t, x) mapping R

∗+ ×R into L2(	) is continuous;
(4) u satisfies (2.2) a.s., for all (t, x) ∈ R

∗+ ×R.
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Notice that the random field is only defined for t > 0, which is natural since at
time t = 0, the solution is defined to be a measure.

According to property (3) in this definition, proving the existence of a random
field solution requires some estimates on its moments. On the other hand, if we
assume existence, then one can readily obtain moment formulas or bounds. Indeed,
consider for example, the parabolic Anderson model, and set

f (t, x) = E
(
u(t, x)2).

For (t, x) ∈ R
∗+ ×R and n ∈ N, we define

L0(t, x) = L0(t, x;ν,λ) := λ2G2
ν(t, x) = λ2

√
4πνt

Gν/2(t, x),

(2.3)
Ln(t, x) = Ln(t, x;ν,λ) := (L0 � · · · �L0︸ ︷︷ ︸

n+1 times of L0

)(t, x) for n ≥ 1.

Then by (2.2) and Itô’s isometry, f (t, x) satisfies the integral equation

f (t, x) = J 2
0 (t, x) + (f �L0)(t, x).(2.4)

Apply this relation recursively:

f (t, x) = J 2
0 (t, x) + ([

J 2
0 + (f �L0)

]
�L0

)
(t, x)

= J 2
0 (t, x) + (

J 2
0 �L0

)
(t, x) + (f �L1)(t, x)

...

= J 2
0 (t, x) +

n−1∑
i=0

(
J 2

0 �Li

)
(t, x) + (f �Ln)(t, x).

It follows from (2.7) below and Definition 2.1(3) that (f �Ln)(t, x) converges to 0
as n → ∞, and the sum converges to (J 2

0 �K)(t, x), where

K(t, x) =K(t, x;ν,λ) :=
∞∑
i=0

Li (t, x;ν,λ).(2.5)

Thus,

E
(
u(t, x)2) = J 2

0 (t, x) + (
J 2

0 �K
)
(t, x).(2.6)

A central observation is that K(t, x) can be computed explicitly, as we now
show. Let

�(x) =
∫ x

−∞
(2π)−1/2e−y2/2 dy, erf(x) = 2√

π

∫ x

0
e−y2

dy,

erfc(x) = 1 − erf(x).



3012 L. CHEN AND R. C. DALANG

Clearly,

�(x) = 1
2

(
1 + erf(x/

√
2)

)
, erf(x) = 2�(

√
2x) − 1,

erfc(x) = 2
(
1 − �(

√
2x)

)
.

Let (·) be Euler’s gamma function [24].

PROPOSITION 2.2. Let b = λ2√
4πν

. For all n ∈ N and (t, x) ∈ R
∗+ × R, let

Ln(t, x) and K(t, x) be defined in (2.3) and (2.5), respectively. Then

Ln(t, x) = Gν/2(t, x)
(b

√
π)n+1

((n + 1)/2)
t(n−1)/2 = L0(t, x)Bn(t),(2.7)

with Bn(t) := π(n+1)/2bntn/2/(n+1
2 ), and

K(t, x) = Gν/2(t, x)

(
λ2

√
4πνt

+ λ4

2ν
eλ4t/(4ν)�

(
λ2

√
t

2ν

))
.(2.8)

Furthermore,

(K �L0)(t, x) = K(t, x) −L0(t, x),(2.9)

and
∑∞

n=0(Bn(t))
1/m < +∞, for all m ∈N

∗.

PROOF. Since (1/2) = √
π (see [24], Equation 5.4.6, page 137), the equa-

tion (2.7) clearly holds for n = 0. Suppose by induction that it is true for n. Using
the semigroup property of the heat kernel,

Ln+1(t, x) = (Ln �L0)(t, x)

= Gν/2(t, x)b
(b

√
π)n+1

((n + 1)/2)

∫ t

0
s−1/2(t − s)(n−1)/2 ds.

Therefore, (2.7) is obtained by using the Beta integral (see [24], (5.12.1), page 142)∫ t

0
s−1/2(t − s)(n−1)/2 ds = tn/2 (1/2)((n + 1)/2)

((n + 2)/2)
for t > 0.(2.10)

Because

ex2
erf(x) =

∞∑
n=1

x2n−1

((2n + 1)/2)
and ex2 =

∞∑
n=1

x2(n−1)

(2n/2)

(see [24], Equation 7.6.2, on page 162, for the first equality), we see that for x > 0,

ex2(
1 + erf(x)

) =
∞∑

n=1

xn−1

((n + 1)/2)
= − 1√

πx
+

∞∑
n=0

xn−1

((n + 1)/2)
.
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Move the term −1/(
√

πx) to the left-hand side, choose x = √
πb2t , and then

multiply by πb2Gν/2(t, x) on both sides. Hence, from (2.7), we see that

Gν/2(t, x)

[
b√
t

+ 2πb2eπb2t�
(√

2πb2t
)] = Gν/2(t, x)

∞∑
n=0

(b
√

π)n+1

((n + 1)/2)
t(n−1)/2

=
∞∑

n=0

Ln(t) =K(t, x),

which proves (2.8).
Formula (2.9) is a direct consequence of (2.5). Finally, fix m ∈ N

∗. Apply the
ratio test:

(Bn(t))
1/m

(Bn−1(t))1/m
= (

√
πtb)1/m

(
(n/2)

((n + 1)/2)

)1/m

(2.11)

≈ (
√

πtb)1/m

(
2

n

)1/(2m)

→ 0 as n → ∞,

where we have used [24], Equation 5.11.12, page 141, for the ratio of the two
gamma functions. Therefore,

∑∞
n=0(Bn(t))

1/m < +∞. This completes the proof.
�

REMARK 2.3 (Moment formula via the Fourier and Laplace transforms). If
we assume the existence of a random field solution, then under additional as-
sumptions, one can also obtain the moment formula by using Fourier and Laplace
transforms. In particular, consider the case where ρ(u) = λu. Then f (t, x) =
E[u(t, x)2] satisfies equation (2.4). Assume that the double transform—the Fourier
transform in x and Laplace transform in t—of J 2

0 (t, x) exists. Note that this as-
sumption is rather strong: If the initial data has exponential growth, for example,
μ(dx) = eβ|x| dx with β > 0, then J0(t, x) has two exponentially growing tails
[see (4.5)], and hence the Fourier transform of J 2

0 (t, x) in x does not exist in the
sense of tempered distributions. Apply the Fourier transform in x and then the
Laplace transform in t on both sides of (2.4):

LF[f ](z, ξ) = LF
[
J 2

0
]
(z, ξ) + λ2LF

[
G2

ν

]
(z, ξ)LF[f ](z, ξ).

Solving for LF[f ](z, ξ), we see that

LF[f ](z, ξ) = LF
[
J 2

0
]
(z, ξ) + λ2LF[G2

ν](z, ξ)

1 − λ2LF[G2
ν](z, ξ)

LF
[
J 2

0
]
(z, ξ).

Apply the Fourier and Laplace transforms to G2
ν(t, x) as follows (see [18],

page 135):

F
[
G2

ν(t, ·)
]
(ξ) = exp(−νt |ξ |2/4)√

4πνt
and

LF
[
G2

ν

]
(z, ξ) = 1√

4νz + |ξ |2ν2
, �[z] > 0.
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Now apply the inverse Laplace transform (see [18], (4) on page 233) to see that

L−1
[

λ2LF[G2
ν](z, ξ)

1 − λ2LF[G2
ν](z, ξ)

]

= L−1
[

λ2√
4νz + |ξ |2ν2 − λ2

]
(t)

= exp
(
−νt |ξ |2

4

)(
λ2

√
4νπt

+ λ4

2ν
exp

(
λ4t

4ν

)
�

(
λ2

√
t

2ν

))
.

Finally, take the inverse Fourier transform of the above quantity to obtain K(t, x)

as in (2.8), together with (2.6).

Assume that ρ : R →R is globally Lipschitz continuous with Lipschitz constant
Lipρ > 0. We need some growth conditions on ρ: Assume that for some constants
Lρ > 0 and ς ≥ 0, ∣∣ρ(x)

∣∣2 ≤ L2
ρ

(
ς2 + x2) for all x ∈ R.(2.12)

Note that we can always take Lρ ≤ √
2 Lipρ , and the inequality may even be strict.

In order to bound the second moment from below, we will sometimes assume that
for some constants lρ > 0 and ς ≥ 0,∣∣ρ(x)

∣∣2 ≥ l2ρ
(
ς2 + x2) for all x ∈ R.(2.13)

We shall give special attention to the linear case (the parabolic Anderson model):
ρ(u) = λu with λ �= 0, which is a special case of the following quasi-linear growth
condition: for some constant ς ≥ 0,∣∣ρ(x)

∣∣2 = λ2(ς2 + x2) for all x ∈ R.(2.14)

Recall the formula for K(t, x) in (2.8). We will use the following conventions:

K(t, x) := K(t, x;ν,λ), K(t, x) := K(t, x;ν,Lρ),

K(t, x) := K(t, x;ν, lρ), K̃p(t, x) := K(t, x;ν, ap,ςzpLρ)(2.15)

for all p > 2,

where the constant ap,ς (≤ 2) is defined by

ap,ς :=
⎧⎨⎩2(p−1)/p, if ς �= 0,p > 2,√

2, if ς = 0,p > 2,
1, if p = 2,

(2.16)

and zp is the universal constant in the Burkholder–Davis–Gundy inequality
(see [10], Theorem 1.4; in particular, z2 = 1), and so

zp ≤ 2
√

p for all p ≥ 2.(2.17)
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Note that K̃p(t, x) implicitly depends on ς through ap,ς , which will be clear from
the context. If p = 2, then K̃p(t, x) = K(t, x). For t ≥ 0, define

H(t;ν,λ) := (1 �K)(t, x) = 2eλ4t/(4ν)�

(
λ2

√
t

2ν

)
− 1(2.18)

(see Lemma A.1 for the second equality). In particular, by (2.8) we can write

K(t, x;ν,λ) = Gν/2(t, x)

(
λ2

√
4πνt

+ λ4

4ν

(
H(t :ν,λ) + 1

))
.(2.19)

We also apply the conventions of (2.15) to the kernel functions Ln(t, x;ν,λ) and
H(t;ν,λ).

Let · and ◦ denote time and space dummy variables, respectively. For τ ≥ t > 0
and x, y ∈R, define

I(t, x, τ, y;ν, ς,λ)

:= λ2
∫ t

0
dr

∫
R

dz
[
J 2

0 (r, z) + (
J 2

0 (·,◦) �K(·,◦;ν,λ)
)
(r, z) + ς2H(r;ν,λ)

]
× Gν(t − r, x − z)Gν(τ − r, y − z)(2.20)

+ λ2ς2

ν
|x − y|

(
�

( |x − y|√
ν(t + τ)

)
− �

( |x − y|√
ν(τ − t)

))
+ λ2ς2[(t + τ)Gν(t + τ, x − y) − (τ − t)Gν(τ − t, x − y)

]
.

When τ = t in this formula, we set �(|x − y|/0) = 1.

THEOREM 2.4 (Existence, uniqueness and moments). Suppose that the func-
tion ρ is Lipschitz continuous and satisfies (2.12), and μ ∈ MH(R). Then the
stochastic integral equation (2.2) has a random field solution u = {u(t, x), (t, x) ∈
R

∗+ ×R}. Moreover:

(1) u is unique (in the sense of versions).
(2) (t, x) → u(t, x) is Lp(	)-continuous for all integers p ≥ 2.
(3) For all even integers p ≥ 2, all τ ≥ t > 0 and x, y ∈ R,∥∥u(t, x)

∥∥2
p ≤

{
J 2

0 (t, x) + (
J 2

0 �K
)
(t, x) + ς2H(t), if p = 2,

2J 2
0 (t, x) + (

2J 2
0 � K̃p

)
(t, x) + ς2H̃p(t), if p > 2,

(2.21)

and

E
[
u(t, x)u(τ, y)

] ≤ J0(t, x)J0(τ, y) + I(t, x, τ, y;ν, ς,Lρ).(2.22)

(4) If ρ satisfies (2.13), then for all τ ≥ t > 0 and x, y ∈ R,∥∥u(t, x)
∥∥2

2 ≥ J 2
0 (t, x) + (

J 2
0 �K

)
(t, x) + ς2H(t)(2.23)

and

E
[
u(t, x)u(τ, y)

] ≥ J0(t, x)J0(τ, y) + I(t, x, τ, y;ν, ς, lρ).(2.24)



3016 L. CHEN AND R. C. DALANG

(5) In particular, if |ρ(u)|2 = λ2(ς2 + u2), then for all τ ≥ t > 0 and x, y ∈ R,∥∥u(t, x)
∥∥2

2 = J 2
0 (t, x) + (

J 2
0 �K

)
(t, x) + ς2H(t)(2.25)

and

E
[
u(t, x)u(τ, y)

] = J0(t, x)J0(τ, y) + I(t, x, τ, y;ν, ς,λ).(2.26)

This theorem will be proved in Section 3.3. We note that it is not clear
if (2.21) holds when p > 2 is a real number but not an even integer. However,
if k ∈ {2,3, . . .} and 2(k − 1) < p ≤ 2k, then ‖u(t, x)‖2

p ≤ ‖u(t, x)‖2
2k and (2.21)

applies to ‖u(t, x)‖2
2k .

COROLLARY 2.5 (Constant initial data). Suppose that |ρ(u)|2 = λ2(ς2 + u2)

and μ is Lebesgue measure. Then for all τ ≥ t > 0 and x, y ∈ R,

E
[
u(t, x)u(τ, y)

]
= 1 + (

1 + ς2)(2.27)

×
[
exp

(
λ4 t̄ − 2λ2|x − y|

4ν

)
erfc

( |x − y| − λ2 t̄

2(νt̄)1/2

)
− erfc

( |x − y|
2(νt̄)1/2

)]
,

where t̄ = (t + τ)/2, and

E
[∣∣u(t, x)

∣∣2] = 1 + (
1 + ς2)H(t).(2.28)

PROOF. In this case, J0(t, x) ≡ 1. Formula (2.28) follows from (2.25)
and (2.18). By (2.26) and using Lemma A.9 to account for the last two terms
in (2.20), we see that

E
[
u(t, x)u(τ, y)

] = 1 + λ2
∫ t

0
dr

∫
R

dz
[
ς2 + 1 + (

1 + ς2)H(r)
]

× Gν(t − r, x − z)Gν(τ − r, y − z)

= 1 + λ2(1 + ς2) ∫ t

0

(
H(r) + 1

)
G2ν

(
t + τ

2
− r, x − y

)
dr,

and this last integral is evaluated by Lemma A.6. �

REMARK 2.6. If ρ(u) = u (i.e., λ = 1 and ς = 0), then (2.28) recovers, in the
case n = 2, the moment formulas of Bertini and Cancrini [3], Theorem 2.6. As for
the two-point correlation function, [3], Corollary 2.4, states the integral formula

E
[
u(t, x)u(t, y)

]
(2.29)

=
∫ t

0
ds

|x − y|√
πνs3

exp
{
−(x − y)2

4νs
+ t − s

4ν

}
�

(√
t − s

2ν

)
.
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By Lemma A.7 below, the integral is equal to

e(t−2|x−y|)/(4ν)erfc
(
(4νt)−1/2(|x − y| − t

))
,

so their result differs from ours. The difference is a term

1 − erfc
(
(4νt)−1/2|x − y|) = erf

(
(4νt)−1/2|x − y|),

which vanishes when x = y. However, for x �= y, this is not the case. For in-
stance, as t tends to zero, the correlation function should have a limit equal to one,
while (2.29) has limit zero. The argument in [3] should be modified as follows (we
use the notation in their paper): (4.6) on page 1398 should be

E
β,1
0

[
exp

(
L

ξ
t (β)√
2ν

)]
=

∫ t

0
Pξ (ds)E

β
0

[
exp

(
Lt−s(β)√

2ν

)]
+ P(Tξ ≥ t).

The extra term P(Tξ ≥ t) is equal to∫ ∞
t

|ξ |√
2πs3

exp
(
−ξ2

2s

)
ds = erf

( |ξ |√
2t

)
= erf

( |x − x′|√
4νt

)
.

With this term, (2.27) is recovered.

EXAMPLE 2.7 (Higher moments for constant initial data). Suppose that
μ(dx) = dx. Then J0(t, x) ≡ 1. By (2.21),

E
[∣∣u(t, x)

∣∣p] ≤ 2p−1 + 2p−1(2 + ς2)p/2 exp
(

a4
p,ςz4

ppL4
ρt

8ν

)
.

Using (2.17) and (2.16), replace zp by 2
√

p, and ap,ς by 2. Thus, mp(x) ≡ mp ≤
25p3L4

ρ/ν. If ς = 0, we can replace ap,ς by
√

2 instead of 2, which gives a slightly
better bound: mp ≤ 23p3L4

ρ/ν. In particular, for the parabolic Anderson model
ρ(u) = λu, we obtain mp ≤ 23p3λ4/ν, which is consistent with Bertini and Can-

crini’s formula: mp = λ4

4!ν p(p2 − 1) (see [3], (2.40)).

COROLLARY 2.8 (Dirac delta initial data). Suppose that |ρ(u)|2 = λ2(ς2 +
u2) and μ is the Dirac delta measure with a unit mass at zero. Then for all t > 0
and x, y ∈ R,

E
[
u(t, x)u(t, y)

] = Gν(t, x)Gν(t, y) − ς2erfc
( |x − y|

2
√

νt

)

+
(

λ2

4ν
Gν/2

(
t,

x + y

2

)
+ ς2

)
exp

(
λ4t − 2λ2|x − y|

4ν

)
(2.30)

× erfc
( |x − y| − λ2t

2
√

νt

)
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and

E
[∣∣u(t, x)

∣∣2] = 1

λ2K(t, x) + ς2H(t).(2.31)

This corollary is proved in Section 3.4.

REMARK 2.9. If ρ(u) = u (i.e., λ = 1 and ς = 0), then (2.31) coincides with
the result by Bertini and Cancrini [3], (2.27) (see also [2, 4]): E[|u(t, x)|2] =
K(t, x). As for the two-point correlation function, Bertini and Cancrini gave the
following integral (see [3], Corollary 2.5):

E
[
u(t, x)u(t, y)

] = 1

2πνt
exp

{
−x2 + y2

2νt

}∫ 1

0
ds

|x − y|√
4πνt

1√
s3(1 − s)

× exp
{
−(x − y)2

4νt

1 − s

s

}
(2.32)

×
(

1 +
√

πt(1 − s)

ν
exp

{
t

2ν

1 − s

2

}
�

(√
t (1 − s)

2ν

))
.

This integral can be evaluated explicitly (see Lemma A.8 below) and coincides
with (2.30) for ς = 0 and λ = 1.

EXAMPLE 2.10 (Higher moments for delta initial data). Suppose that μ =
δ0 and ς = 0. Let p ≥ 2 be an even integer. Clearly, J0(t, x) ≡ Gν(t, x). Then
by (2.21) and (2.9),

E
[∣∣u(t, x)

∣∣p] ≤ 2p−1Gp
ν (t, x) + 2(p−2)/2L−p

ρ z−p
p

∣∣K̃p(t, x)
∣∣p/2

.

It follows from (2.8) and (2.17) that for all x ∈ R, mp(x) ≤ L4
ρz4

pp/(2ν) ≤
23p3L4

ρ/ν. Note that this upper bound is identical to the case of the constant
initial data (Example 2.7). Concerning the growth indices, we see from (2.8)
that

lim
t→+∞

1

t
sup

|x|>αt

logE
[∣∣u(t, x)

∣∣p] ≤ −α2p

2ν
+ L4

ρpz4
p

2ν
for all α ≥ 0.

Hence, λ(p) ≤ z2
pL2

ρ . Similarly, λ(2) ≥ l2ρ/2 after using (2.23). Therefore,
l2ρ
2 ≤

λ(p) ≤ λ(p) ≤ z2
pL2

ρ for all even integers p ≥ 2. The same bounds are obtained
for more general initial data in Theorem 2.12.

The following proposition shows that initial data cannot be extended beyond
measures.
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PROPOSITION 2.11. Suppose that μ = δ′
0 (the derivative of the Dirac delta

measure at zero). Let ρ(u) = λu (λ �= 0). Then (2.2) does not have a random field
solution.

The proof of this proposition is given in Section 3.4.

2.2. Growth indices. For β ≥ 0, define

Mβ
G(R) :=

{
μ ∈M(R) :

∫
R

eβ|x||μ|(dx) < +∞
}
.

Let M+(R) denote the set of nonnegative Borel measures over R,

Mβ
G,+(R) = Mβ

G(R) ∩M+(R) and MH,+(R) =MH(R) ∩M+(R).

Recall the definitions of λ(p) and λ(p) in (1.6) and (1.7).

THEOREM 2.12. (1) Suppose that |ρ(u)|2 ≥ l2ρ(ς2 + u2) and p ≥ 2. If ς = 0,
then λ(p) ≥ l2ρ/2 for all μ ∈ MH,+(R) with μ �= 0; if ς �= 0, then λ(p) = λ(p) =
+∞, for all μ ∈ MH,+(R).

(2) If |ρ(u)|2 ≤ L2
ρ(ς2 + u2) with ς = 0 (which implies ς = ς = 0) and μ ∈

Mβ
G(R) for some β > 0, then for all even integers p ≥ 2,

λ(p) ≤
⎧⎪⎨⎪⎩

βν

2
+ z4

pL4
ρ

2νβ
, if 0 ≤ β < ν−1z2

pL2
ρ ,

z2
pL2

ρ, if β ≥ ν−1z2
pL2

ρ .

In addition,

λ(2) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βν

2
+ L4

ρ

8νβ
, if 0 ≤ β <

L2
ρ

2ν
,

1

2
L2

ρ, if β ≥ L2
ρ

2ν
.

(3) Suppose that |ρ(u)|2 = λ2(ς2 +u2), λ �= 0. If ς = 0 and β ≥ λ2

2ν
, then λ(2) =

λ(2) = λ2/2 for all μ ∈ Mβ
G,+(R) with μ �= 0; if ς �= 0, then λ(p) = λ(p) = +∞

for all μ ∈ MH,+(R) and p ≥ 2.

This theorem generalizes the results in [10] in several regards: (i) more general
initial data are allowed; (ii) both nontrivial upper bounds and lower bounds are
given (compare with [10], Theorem 1.1) for the Laplace operator case; (iii) for the
parabolic Anderson model, the exact transition is proved (see Theorem 1.3 and
the first open problem in [10]) for n = 2 and the Laplace operator case; (iv) our
discussions above cover the case where ρ(0) �= 0. The lower bounds are proved in
Section 4.1, the upper bounds in Section 4.2.
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EXAMPLE 2.13 (Delta initial data). Suppose that ς = ς = 0. Clearly, δ0 ∈
Mβ

G,+(R) for all β ≥ 0. Hence, the above theorem implies that for all even integers

k ≥ 2,
l2ρ
2 ≤ λ(k) ≤ λ(k) ≤ z2

kL2
ρ , which recovers the bounds in Example 2.10.

PROPOSITION 2.14. Consider the parabolic Anderson model ρ(u) = λu,
λ �= 0, with the initial data μ(dx) = e−β|x| dx (β > 0). Then

λ(2) = λ(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βν

2
+ λ4

8βν
, if 0 < β ≤ λ2

2ν
,

λ2

2
, if β ≥ λ2

2ν
.

(2.33)

This proposition shows that for all β ∈]0,+∞], the exact phase transition oc-
curs, and hence our upper bounds for λ(2) in Theorem 2.12 are sharp. See Sec-
tion 4.3 for the proof.

3. Proof of existence, uniqueness and moment estimates.

3.1. Some criteria for predictable random fields. A random field {Z(t, x)} is
called elementary if we can write Z(t, x) = Y1]a,b](t)1A(x), where 0 ≤ a < b,
A ⊂ R is an interval, and Y is an Fa-measurable random variable. A simple process
is a finite sum of elementary random fields. The set of simple processes generates
the predictable σ -field on R+×R×	, denoted by P . For p ≥ 2 and X ∈ L2(R+×
R,Lp(	)), set

‖X‖2
M,p :=

∫∫
R

∗+×R

∥∥X(s, y)
∥∥2
p ds dy < +∞.(3.1)

When p = 2, we write ‖X‖M instead of ‖X‖M,2. In [29],
∫∫

X dW is defined for
predictable X such that ‖X‖M < +∞. However, the condition of predictability is
not always so easy to check, and as in the case of ordinary Brownian motion [7],
Chapter 3, it is convenient to be able to integrate elements X that are merely jointly
measurable and adapted. For this, let Pp denote the closure in L2(R+ ×R,Lp(	))

of simple processes. Clearly, P2 ⊇ Pp ⊇ Pq for 2 ≤ p ≤ q < +∞, and according
to Itô’s isometry,

∫∫
X dW is well defined for all elements of P2. The next propo-

sition gives easily verifiable conditions for checking that X ∈P2.

PROPOSITION 3.1. Suppose that for some t > 0 and p ∈ [2,+∞[, a random
field X = {X(s, y), (s, y) ∈]0, t[×R} has the following properties:

(i) X is adapted, that is, for all (s, y) ∈]0, t[×R, X(s, y) is Fs-measurable;
(ii) X is jointly measurable with respect to B(]0, t[×R) ×F ;

(iii) ‖X(·,◦)1]0,t[(·)‖M,p < +∞.
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Then X(·,◦)1]0,t[(·) belongs to P2.

PROOF. Step 1. We first prove this proposition with (ii) replaced by:

(ii′) For all (s, y) ∈]0, t[×R, ‖X(s, y)‖p < +∞ and the function (s, y) →
X(s, y) from ]0, t[×R into Lp(	) is continuous.

Fix ε > 0 with ε ≤ t/3. Since ‖X(·,◦)1]0,t[(·)‖M,p < +∞, choose a = a(ε) >

max(t,2/t) large enough so that∫∫
([1/a,t−1/a]×[−a,a])c

∥∥X(s, y)
∥∥2
p1]0,t[(s)ds dy < ε.

Due to the Lp(	)-continuity hypothesis in (ii′), we can choose n ∈N large enough
so that for all (s1, y1), (s2, y2) ∈ [ε, t − ε] × [−a, a],

max
{|s1 − s2|, |y1 − y2|} ≤ t − 2/a

n
⇒ ∥∥X(s1, y1) − X(s2, y2)

∥∥
p <

ε

a
.

Choose m ∈ N large enough so that a/m ≤ (t −2/a)/n. Set tj = j (t−2/a)
n

+ 1
a

with
j ∈ {0, . . . , n} and xi = ia

m
− a with i ∈ {0, . . . ,2m}. Then define

Xn,m(t, x) =
n−1∑
j=0

2m−1∑
i=0

X(tj , xi)1]tj ,tj+1](t)1]xi ,xi+1](x).

Since X is adapted, X(tj , xi) is Ftj -measurable, and so Xn,m is predictable, and
clearly, Xn,m ∈ Pp . Since Xn,m(t, x) vanishes outside of the rectangle [1/a, t −
1/a] × [−a, a], we have∥∥X1]0,t[ − Xn,m

∥∥2
M,p =

∫∫
([1/a,t−1/a]×[−a,a])c

∥∥X(s, y)
∥∥2
p1]0,t[(s)ds dy

+
n−1∑
j=0

2m−1∑
i=0

∫ tj+1

tj

∫ xi+1

xi

∥∥X(tj , xi) − X(s, y)
∥∥2
p ds dy

≤ ε +
n−1∑
j=0

2m−1∑
i=0

∫ tj+1

tj

∫ xi+1

xi

ε2

a2 ds dy

= ε + ε2 2at − 4

a2 ≤ ε + 2ε2t

a
≤ ε + 2ε2.

Therefore, X(·,◦)1]0,t[(·) ∈ Pp ⊆ P2.
Step 2. Now we prove this proposition under (ii), assuming that X is bounded.

Take a ψ ∈ C∞
c (R2), nonnegative, such that supp(ψ) ⊂]0, t[× ]−1,1[ and∫∫

R2 ψ(s, y)ds dy = 1. Let ψn(s, y) := n2ψ(ns,ny) for each n ∈ N
∗, and
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X̃n(s, y) := (ψn � X)(s, y) for all (s, y) ∈]0, t[×R. Note that when we do the
convolution in time, X(s, y) is understood to be zero for s /∈]0, t[.

We shall first prove that X̃n(·,◦)1]0,t[(·) ∈ P2 for all n ∈N
∗ and∥∥X̃n(·,◦)1]0,t[

∥∥
M,2 ≤ ∥∥X(·,◦)1]0,t[

∥∥
M,2 < +∞.(3.2)

The inequality (3.2) is true since, by Hölder’s inequality,∥∥X̃n(·,◦)1]0,t[(·)
∥∥2
M,2 ≤

∫∫
[0,t]×R

ds dy

∫∫
R2

E
(
X2(u, z)

)
ψn(s − u,y − z)dudz,

which is less than ‖X(·,◦)1]0,t[(·)‖2
M,2 and is finite by property (iii).

The condition that supp(ψ) ⊂ R
∗+ × R, together with the joint measurability

of X, ensures that X̃n is still adapted. The sample path continuity of X̃n in both
the space and time variables implies L2(	)-continuity, thanks to the boundedness
of X. Hence, we can apply step 1 to conclude that X̃n(·,◦)1]0,t[(·) ∈ P2, for all
n ∈ N

∗.
Property (iii) implies that there is 	′ ⊆ 	 such that P(	′) = 1 and for all ω ∈

	′, X(·,◦,ω) ∈ L2(]0, t[×R). Now fix ω ∈ 	′. Then

lim
n→+∞

∥∥X̃n(·,◦,ω) − X(·,◦,ω)
∥∥
L2(]0,t[×R) = 0

and ∥∥X̃n(·,◦,ω)
∥∥
L2(]0,t[×R) ≤ ∥∥X(·,◦,ω)

∥∥
L2(]0,t[×R)

(see, e.g., [1], Theorem 2.29(c)). Thus, by Lebesgue’s dominated convergence the-
orem, which applies by (iii),

lim
n→∞E

[∥∥X̃n(·,◦) − X(·,◦)∥∥2
L2(]0,t[×R)

] = 0.

We conclude that X(·,◦)1]0,t[(·) ∈P2.
Step 3. Now we consider a general X satisfying (i), (ii) and (iii). For M > 0,

denote

XM(s, y,ω)1]0,t[(s) =
{

X(s, y,ω)1]0,t[(s), if
∣∣X(s, y,ω)

∣∣ ≤ M ,
0, otherwise.

Since each XM(·,◦)1]0,t[(·) is bounded, satisfies (i), (ii) and (iii), and
XM(·,◦)1]0,t[(·) → X(·,◦)1]0,t[(·) in ‖ · ‖M,2 as M → +∞ (by Lebesgue’s dom-
inated convergence theorem), we conclude from step 2 that X(·,◦)1]0,t[(·) ∈ P2.

�

REMARK 3.2. The step 1 in the proof of Proposition 3.1 is an extension (but
specialized to space–time white noise) of Dalang and Frangos’s result in [13],
Proposition 2, since the second moment of X can explode at s = 0 or s = t .
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3.2. Lp-bounds on stochastic convolutions. We will need an extension of [10],
Lemma 2.4, to allow all adapted, jointly measurable and integrable random fields
(see also [19], Lemma 3.4).

LEMMA 3.3. Let G(s, y) be a deterministic measurable function from R
∗+ ×

R to R and let Z = (Z(s, y), (s, y) ∈ R
∗+ × R) be a process with the following

properties:

(1) Z is adapted and jointly measurable with respect to B(R∗+ ×R) ×F ;
(2) E[∫∫[0,t]×R

G2(t − s, x − y)Z2(s, y)ds dy] < ∞, for all (t, x) ∈ R+ ×R.

Then for each (t, x) ∈ R+ ×R, the random field (s, y) ∈]0, t[×R → G(t − s, x −
y)Z(s, y) belongs to P2 and so the stochastic convolution

(G � ZẆ)(t, x) :=
∫∫

[0,t]×R

G(t − s, x − y)Z(s, y)W(ds,dy)(3.3)

is a well-defined Walsh integral and the random field G �ZẆ is adapted. Moreover,
for all even integers p ≥ 2 and (t, x) ∈ R+ ×R,∥∥(G � ZẆ)(t, x)

∥∥2
p ≤ z2

p

∥∥G(t − ·, x − ◦)Z(·,◦)∥∥2
M,p.

We note that [10] assumes that Z is predictable. However, using Proposition 3.1,
the proof of this lemma is the same as that of [10].

PROPOSITION 3.4. Suppose that for some even integer p ∈ [2,+∞[, a ran-
dom field Y = (Y (t, x), (t, x) ∈ R

∗+ ×R) has the following three properties:

(i) Y is adapted;
(ii) Y is jointly measurable with respect to B(R∗+ ×R) ×F ;

(iii) for all (t, x) ∈ R
∗+ ×R, ‖Gν(t − ·, x − ◦)Y (·,◦)‖2

M,p < +∞.

Then for all (t, x) ∈ R
∗+ ×R, Gν(t − ·, x − ◦)Y (·,◦) ∈ P2 and the random field

w(t, x) =
∫∫

]0,t[×R

Gν(t − s, x − y)Y (s, y)W(ds,dy)

has the property that if Y has locally bounded pth moments, that is, for K ⊂
R

∗+ ×R compact,

sup
(t,x)∈K

∥∥Y(t, x)
∥∥
p < +∞,(3.4)

which is the case if Y is Lp(	)-continuous, then w is Lp(	)-continuous on
R

∗+ ×R.

Before proving this proposition, we need the following proposition.
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PROPOSITION 3.5. There are three universal constants C1 = 1, C2 =
√

2−1√
π

,

and C3 = 1√
π

, such that for all s, t with 0 ≤ s ≤ t and x ∈ R,∫ t

0
dr

∫
R

dz
[
Gν(t − r, x − z) − Gν(t − r, y − z)

]2 ≤ C1

ν
|x − y|,(3.5) ∫ s

0
dr

∫
R

dz
[
Gν(t − r, x − z) − Gν(s − r, x − z)

]2 ≤ C2√
ν

√
t − s,(3.6)

∫ t

s
dr

∫
R

dz
[
Gν(t − r, x − z)

]2 ≤ C3√
ν

√
t − s,(3.7) ∫∫

R+×R

(
Gν(t − r, x − z) − Gν(s − r, y − z)

)2 dr dz

≤ 2C1

( |x − y|
ν

+
√|t − s|√

ν

)
,

where we use the convention that Gν(t, ·) ≡ 0 if t ≤ 0.

REMARK 3.6. Similar estimates can be found in, for example, [28], Lem-
ma 6.2, and [21], Theorem 6.7. The above is a slight improvement because all three
constants are best possible. Since the values of these constants are not essential
here, we refer to [6], Proposition 2.3.9, for the proof. Note that C1 = 1 was not
obtained in this reference, but with a slight change in the last lines of the proof
of [6], Proposition 2.3.9(i), the value C1 = 1 can be obtained, and this is optimal.

PROOF OF PROPOSITION 3.4. Fix (t, x) ∈ R
∗+ × R. Clearly, X = (X(s, y),

(s, y) ∈]0, t[×R) with X(s, y) = Y(s, y)Gν(t −s, x−y) satisfies all conditions of
Proposition 3.1. This implies that for all (t, x) ∈ R

∗+ ×R, Y(·,◦)Gν(t −·, x −◦) ∈
P2. Hence w(t, x) is a well-defined Walsh integral and the resulting random field
is adapted to the filtration {Fs, s ≥ 0}.

Now we shall prove the Lp(	)-continuity. Fix (t, x) ∈ R
∗+ × R. Let Bt,x and

a denote, respectively, the set and the constant defined in Proposition A.3. We
assume that (t ′, x′) ∈ Bt,x . Denote

(t∗, x∗) =
{ (

t ′, x′), if t ′ ≤ t ,
(t, x), if t ′ > t ,

and (t̂ , x̂) =
{

(t, x), if t ′ ≤ t ,(
t ′, x′), if t ′ > t .

Set Ka = [1/a, t + 1] × [−a, a]. Let Aa = sup(s,y)∈Ka
‖Y(s, y)‖2

p , which is finite
by (3.4). By Lemma 3.3, we have∥∥w(t, x) − w

(
t ′, x′)∥∥p

p

≤ 2p−1zp
p

(∫ t∗

0

∫
R

∥∥Y(s, y)
∥∥2
p

(
Gν(t − s, x − y)
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− Gν

(
t ′ − s, x′ − y

))2 ds dy

)p/2

+ 2p−1zp
p

(∫ t̂

t∗

∫
R

∥∥Y(s, y)
∥∥2
pG2

ν(t̂ − s, x̂ − y)ds dy

)p/2

≤ 2p−1zp
p

(
L1

(
t, t ′, x, x′))p/2 + 2p−1zp

p

(
L2

(
t, t ′, x, x′))p/2

.

We first consider L1. Write L1 = L1,1(t, t
′, x, x′) + L1,2(t, t

′, x, x′), where

L1,1
(
t, t ′, x, x′)
=

∫∫
([0,t∗]×R)\Ka

∥∥Y(s, y)
∥∥2
p

(
Gν(t − s, x − y) − Gν

(
t ′ − s, x′ − y

))2 ds dy,

L1,2
(
t, t ′, x, x′)
=

∫∫
([0,t∗]×R)∩Ka

∥∥Y(s, y)
∥∥2
p

(
Gν(t − s, x − y) − Gν

(
t ′ − s, x′ − y

))2 ds dy.

By Proposition A.3,

sup
(t ′,x′)∈Bt,x

(
Gν(t − s, x − y) − Gν

(
t ′ − s, x′ − y

))2

(3.8)
≤ 4G2

ν(t + 1 − s, x − y),

for all s ∈ [0, t ′] and |y| ≥ a. Moreover,∫∫
([0,t∗]×R)\Ka

∥∥Y(s, y)
∥∥2
pG2

ν(t + 1 − s, x − y)ds dy

≤ ∥∥Y(·,◦)Gν(t + 1 − ·, x − ◦)∥∥2
M,p < +∞.

Therefore, Lebesgue’s dominated convergence theorem implies that

lim
(t ′,x′)→(t,x)

L1,1
(
t, t ′, x, x′) = 0.

By Proposition 3.5, for some constant C > 0 depending only on ν,

L1,2
(
t, t ′, x, x′)
≤ Aa

∫∫
([0,t∗]×R)∩Ka

(
Gν(t − s, x − y) − Gν

(
t ′ − s, x′ − y

))2 ds dy

≤ AaC
(∣∣x − x′∣∣ + √∣∣t − t ′

∣∣).
Therefore, lim(t ′,x′)→(t,x) L1(t

′, t, x, x′) = 0.
Now let us consider L2. Decompose L2 into L2,1(t, t

′, x, x′)+L2,2(t, t
′, x, x′),

where

L2,1
(
t, t ′, x, x′) =

∫∫
([t∗,t̂]×R)\Ka

∥∥Y(s, y)
∥∥2
pGν(t̂ − s, x̂ − y)2 ds dy,
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L2,2
(
t, t ′, x, x′) =

∫∫
([t∗,t̂]×R)∩Ka

∥∥Y(s, y)
∥∥2
pGν(t̂ − s, x̂ − y)2 ds dy.

The proof that lim(t ′,x′)→(t,x) L2,1(t, t
′, x, x′) = 0 is the same as for L1,1, except

that (3.8) must be replaced by

sup
(t ′,x′)∈Bt,x

G2
ν(t̂ − s, x̂ − y) ≤ G2

ν(t + 1 − s, x − y).

The proof for L2,2 is similar to L1,2: by Proposition 3.5,

L2,2
(
t, t ′, x, x′) ≤ Aa

∫ t̂

t∗
ds

∫
R

G2
ν(t̂ − s, x̂ − y)dy ≤ AaC

√∣∣t ′ − t
∣∣ → 0,

as (t ′, x′) → (t, x). Therefore, lim(t ′,x′)→(t,x) L2(t
′, t, x, x′) = 0, which completes

the proof. �

We will need deterministic integral inequalities for the moments of the solu-
tion to (2.2). Define bp = 1 if p = 2 and bp = 2 if p > 2. Recall the formula L0
defined in (2.3) and define the associated functions L0 and L̃0,p using the conven-
tion (2.15).

LEMMA 3.7. Suppose that f (t, x) is a deterministic function and ρ satisfies
the growth condition (2.12). If the random fields w and v satisfy, for all t > 0 and
x ∈ R,

w(t, x) = f (t, x) +
∫∫

[0,t]×R

Gν(t − s, x − y)ρ
(
v(s, y)

)
W(ds,dy),

where we assume that Gν(t − ·, x − ◦)ρ(v(·,◦)) ∈ P2, then for all even integers
p ≥ 2, ∥∥(Gν � ρ(v)Ẇ

)
(t, x)

∥∥2
p ≤ z2

p

∥∥Gν(t − ·, x − ◦)ρ(v(·,◦))∥∥2
M,p

≤ 1

bp

((
ς2 + ‖v‖2

p

)
� L̃0,p

)
(t, x).

In particular,∥∥w(t, x)
∥∥2
p ≤ bpf 2(t, x) + ((

ς2 + ‖v‖2
p

)
� L̃0,p

)
(t, x),

and, assuming (2.13),∥∥w(t, x)
∥∥2

2 ≥ f 2(t, x) + ((
ς2 + ‖v‖2

p

)
�L0

)
(t, x).(3.9)

PROOF. For p = 2, by the Itô isometry, (2.12), and the fact that a2,ς = 1 and
z2 = 1, ∥∥w(t, x)

∥∥2
2 ≤ f 2(t, x) + ((

ς2 + ‖v‖2
2
)
� L̃0,2

)
(t, x),
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and (3.9) is obtained similarly. Now we consider the case p > 2. Clearly,∥∥w(t, x)
∥∥2
p ≤ 2

∣∣f (t, x)
∣∣2 + 2

∥∥(Gν � ρ(v)Ẇ
)
(t, x)

∥∥2
p.

By Lemma 3.3, we have that∥∥(Gν � ρ(v)Ẇ
)
(t, x)

∥∥2
p ≤ z2

p

∥∥Gν(t − ·, x − ◦)ρ(v(·,◦))∥∥2
M,p.

If ς = 0, then ‖ρ(v(s, y))‖2
p ≤ L2

ρ‖v(s, y)‖2
p . Otherwise, by (2.12) and subaddi-

tivity of the function x → |x|2/p ,∥∥ρ(v(s, y)
)∥∥2

p ≤ L2
ρ2(p−2)/p(ς2 + ∥∥v(s, y)

∥∥2
p

)
.

Combining these two cases proves that

z2
pbp

∥∥Gν(t − ·, x − ◦)ρ(v(·,◦))∥∥2
M,p

≤ z2
pL2

ρa2
p,ς

∫∫
[0,t]×R

G2
ν(t − s, x − y)

(
ς2 + ∥∥v(s, y)

∥∥2
p

)
ds dy

= ([
ς2 + ∥∥v(·,◦)∥∥2

p

]
� L̃0,p

)
(t, x),

because a2
p,0 = bp , and a2

p,ς = 2(p−2)/p+1 = 22(p−1)/p for ς �= 0 and p > 2. �

3.3. Proof of Theorem 2.4. We begin by stating two lemmas.

LEMMA 3.8. The solution (t, x) → J0(t, x) to the homogeneous equa-
tion (2.1) with μ ∈ MH(R) is smooth: J0 ∈ C∞(R∗+ × R). If, in addition,
μ(dx) = f (x)dx, where f is continuous, then J0 ∈ C∞(R∗+ ×R) ∩ C(R+ ×R),
and if f is α-Hölder continuous, then J0 ∈ C∞(R∗+ ×R) ∩ Cα/2,α(R+ ×R).

PROOF. The property J0 ∈ C∞(R∗+ × R) is a slight extension of standard
results (see [20], (1.14) on page 210). For more details, we refer the interested
reader to [6], Section 2.6. We only show here that J0 ∈ Cα/2,α(R+ × R) if
μ(dx) = f (x)dx and f is α-Hölder continuous. Fix (t, x) and (t ′, x′) ∈ R+ × R

with t ′ > t . By changing variables appropriately, we see that

J0(t, x) − J0
(
t ′, x′) =

∫
R

Gν(1, z)
(
f (x − √

tz) − f
(
x − √

t ′z
))

dz.

By the Hölder continuity of f , for some constants C and C′,∣∣J0(t, x) − J0
(
t ′, x

)∣∣ ≤ C
∣∣√t − √

t ′
∣∣α ∫

R

Gν(1, z)|z|α dz ≤ C′∣∣t ′ − t
∣∣α/2

.

Spatial increments are treated similarly. �
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If the initial data is such that J 2
0 (t, x) is a constant v2, that is, μ(dx) = v dx,

then (J 2
0 �K)(t, x) = (v2 �K)(t, x) = v2H(t). Clearly,

(
v2 �L0

)
(t, x) = v2λ2

∫ t

0
ds

1√
4πνs

∫
R

dy Gν/2(s, y) = v2λ2

√
t

πν
.(3.10)

For general J 2
0 (t, x), we have the following.

LEMMA 3.9. Fix μ ∈ MH(R). Suppose K(t, x) = Gν/2(t, x)h(t) for some
nonnegative function h(t). Then for all (t, x) ∈ R

∗+ ×R,

(
J 2

0 � K
)
(t, x) ≤ 2

√
t
∣∣J ∗

0 (2t, x)
∣∣2 ∫ t

0

h(t − s)√
s

ds,(3.11)

where J ∗
0 (t, x) = (Gν(t, ·) ∗ |μ|)(x). In particular, for all (t, x) ∈ R

∗+ ×R,

(
J 2

0 �K
)
(t, x) ≤ λ2√πt/ν

∣∣J ∗
0 (2t, x)

∣∣2(1 + 2 exp
(

λ4t

4ν

))
< +∞,(3.12)

(
J 2

0 �L0
)
(t, x) ≤ λ2√πt/ν

∣∣J ∗
0 (2t, x)

∣∣2 < +∞.(3.13)

PROOF. Assume that μ ≥ 0. Write J 2
0 (s, y) as a double integral:

(
J 2

0 � K
)
(t, x) =

∫ t

0
ds

∫
R

dy

∫∫
R2

Gν(s, y − z1)Gν(s, y − z2)

(3.14)
× Gν/2(t − s, x − y)h(t − s)μ(dz1)μ(dz2).

Then apply Lemma A.4 to Gν(s, y − z1)Gν(s, y − z2) and integrate over y using
the semigroup property of the heat kernel and setting z̄ = (z1 + z2)/2:(

J 2
0 � K

)
(t, x)

(3.15)

=
∫ t

0
ds

∫∫
R2

G2ν(s, z2 − z1)Gν/2(t, x − z̄)h(t − s)μ(dz1)μ(dz2).

Applying Lemma A.5 and then integrating over z1 and z2 proves (3.11). For
a signed measure μ, simply replace μ by |μ|. The inequality (3.13) is proved
by choosing h(t) = λ2(4πνt)−1/2. Finally, (3.12) follows from (3.11) by taking
h(t) = 1√

4πνt
+ λ2

2ν
eλ4t/(4ν) and then using the change of variable s = u2/a to see

that ∫ t

0

ea(t−s)

√
s

ds = √
π/aeaterf(

√
at) ≤ √

π/aeat , a > 0.(3.16)

This completes the proof. �
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Comparing the proofs of (3.12) and (3.13), we can see that (J 2
0 �K)(t, x) < ∞

if and only if (J 2
0 �L0)(t, x) < ∞: the main issue is the integrability around t = 0

caused by the factor 1√
t

in L0.

PROOF OF THEOREM 2.4. Fix an even integer p ≥ 2.
Step 1. Define u0(t, x) = J0(t, x). By Lemma 3.8, u0(t, x) is a well defined and

continuous function over (t, x) ∈ R
∗+ × R. We shall now apply Proposition 3.4

with Y = ρ(u0). We check the three properties that it requires. Properties (i) and
(ii) are trivially satisfied since Y is deterministic and continuous over R

∗+ × R.
Property (iii) is also true since, by Lemma 3.7,

bpz2
p

∥∥ρ(u0(·,◦))Gν(t − ·, x − ◦)∥∥2
M,p ≤ ([

ς2 + J 2
0
]
� L̃0,p

)
(t, x),(3.17)

which is finite by (3.10) and Lemma 3.9. Hence, the following Walsh integral is
well defined and is an adapted random field

I1(t, x) =
∫∫

[0,t]×R

ρ
(
u0(s, y)

)
Gν(t − s, x − y)W(ds,dy).

The continuity of the deterministic function (s, y) → ρ(u0(s, y)) implies its lo-
cal Lp(	)-boundedness [in the sense of (3.4)]. So (t, x) → I1(t, x) is Lp(	)-
continuous on R

∗+ ×R by Proposition 3.4.
Define u1(t, x) = J0(t, x) + I1(t, x). Since J0(t, x) is continuous on R

∗+ × R,
u1(t, x) is Lp(	)-continuous on R

∗+ ×R. Now we estimate its moments. By Itô’s
isometry, ∥∥I1(t, x)

∥∥2
2 = ∥∥ρ(u0(·,◦))Gν(t − ·, x − ◦)∥∥2

M,2,

which equals ([ς2 +J 2
0 ]�L0)(t, x) for the quasi-linear case (2.14), and is bounded

from above [see (3.17) with b2z
2
2 = 1] and below [if ρ additionally satisfies (2.13)],

in which case([
ς2 + J 2

0
]
�L0

)
(t, x) ≤ ∥∥I1(t, x)

∥∥2
2 ≤ ([

ς2 + J 2
0
]
�L0

)
(t, x).

Since J0(t, x) is deterministic and since E[I1(t, x)] = 0, ‖u1(t, x)‖2
2 = J 2

0 (t, x) +
‖I1(t, x)‖2

2, and by Lemma 3.7,∥∥u1(t, x)
∥∥2
p ≤ bpJ 2

0 (t, x) + ((
ς2 + J 2

0
)
� L̃0,p

)
(t, x)

≤ bpJ 2
0 (t, x) + ((

ς2 + bpJ 2
0
)
� K̃p

)
(t, x),

since bp ≥ 1 and L̃0,p ≤ K̃p by (2.5).
In summary, u1 is a well-defined random field that satisfies (with k = 1) the four

properties (1)–(4) described just below in step 2.
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Step 2. Assume by induction that for all k ≤ n and (t, x) ∈ R
∗+ × R, the Walsh

integral

Ik(t, x) =
∫∫

[0,t]×R

ρ
(
uk−1(s, y)

)
Gν(t − s, x − y)W(ds,dy)

is well defined such that:

(1) uk := J0 + Ik is adapted to the filtration {Ft }t>0.
(2) The function (t, x) → uk(t, x) from R

∗+ ×R into Lp(	) is continuous.
(3) E[u2

k(t, x)] = J 2
0 (t, x) + ∑k−1

i=0 ([ς2 + J 2
0 ] � Li )(t, x) for the quasi-linear

case and it is bounded from above and below [if ρ satisfies (2.13)] by

J 2
0 (t, x) +

k−1∑
i=0

([
ς2 + J 2

0
]
�Li

)
(t, x) ≤ E

[
u2

k(t, x)
]

≤ J 2
0 (t, x) +

k−1∑
i=0

([
ς2 + J 2

0
]
�Li

)
(t, x).

(4) ‖uk(t, x)‖2
p ≤ bpJ 2

0 (t, x) + ((ς2 + bpJ 2
0 ) � K̃p)(t, x).

We are now going to define un+1(t, x). We shall apply Proposition 3.4 again,
with Y(s, y) = ρ(un(s, y)), by verifying the three properties that it requires. Prop-
erties (i) and (ii) are clearly satisfied by the induction assumptions (1) and (2). By
Lemma 3.7 and the induction assumptions, we establish property (iii):

bpz2
p

∥∥ρ(un(·,◦))Gν(t − ·, x − ◦)∥∥2
M,p

≤ ((
ς2 + ‖un‖2

p

)
� L̃0,p

)
(t, x)

(3.18)
≤ ([

ς2 + bpJ 2
0 + (

ς2 + bpJ 2
0
)
� K̃p

]
� L̃0,p

)
(t, x)

= ([
ς2 + bpJ 2

0
]
� K̃p

)
(t, x),

by (2.9), and this is finite by Lemma 3.9.
Hence, for all (t, x) ∈ R

∗+ ×R, ρ(un(·,◦))Gν(t − ·, x − ◦) ∈Pp and the Walsh
integral

In+1(t, x) =
∫∫

[0,t]×R

ρ
(
un(s, y)

)
Gν(t − s, x − y)W(ds,dy)

is a well defined and adapted random field. By assumption (2), (s, y) →
ρ(un(s, y)) is Lp(	)-continuous, so Proposition 3.4 implies that (t, x) →
In+1(t, x) is also Lp(	)-continuous. Define

un+1(t, x) = J0(t, x) + In+1(t, x).
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Now we estimate the moments of un+1(t, x). By Lemma 3.7 and (3.18),∥∥un+1(t, x)
∥∥2
p ≤ bpJ 2

0 (t, x) + ((
ς2 + bpJ 2

0
)
� K̃p

)
(t, x).

As for the second moment, by Lemma 3.7,

J 2
0 (t, x) + ([

ς2 + ‖un‖2
2
]
�L0

)
(t, x) ≤ E

[
u2

n+1(t, x)
]

≤ J 2
0 (t, x) + ([

ς2 + ‖un‖2
2
]
�L0

)
(t, x).

Substituting the bounds from induction assumption (3) gives

J 2
0 (t, x) +

n∑
i=0

([
ς2 + J 2

0
]
�Li

)
(t, x) ≤ E

[
u2

n+1(t, x)
]

≤ J 2
0 (t, x) +

n∑
i=0

([
ς2 + J 2

0
]
�Li

)
(t, x).

In the quasi-linear case, the inequalities become the equality

E
[
u2

n+1(t, x)
] = J 2

0 (t, x) +
n∑

i=0

([
ς2 + J 2

0
]
�Li

)
(t, x).

Therefore, the four properties (1)–(4) also hold for k = n + 1.
Step 3. We claim that for all (t, x) ∈ R

∗+ × R, the sequence {un(t, x)}n∈N is a
Cauchy sequence in Lp(	), and we will use u(t, x) to denote its limit. To prove
this claim, define Fn(t, x) = ‖un+1(t, x) − un(t, x)‖2

p . For n ≥ 1, by Lemma 3.3
and the Lipschitz continuity of ρ,

Fn(t, x) ≤ (Fn−1 � qL0,p)(t, x)

with qL0,p(t, x) := L0
(
t, x;ν, zp max(Lipρ, ap,ςLρ)

)
.

By analogy with the convention (2.15), the functions qLn,p(t, x) and qK(t, x) are
defined by the same parameters as qL0,p(t, x). For the case n = 0, we need to use
the linear growth condition (2.12) instead: By Lemma 3.7,

F0(t, x) ≤ ([
ς2 + J 2

0
]
� L̃0,p

)
(t, x) ≤ ([

ς2 + J 2
0
]
� qL0,p

)
(t, x).

Then apply the above relation recursively:

Fn(t, x) ≤ (Fn−1 � qL0,p)(t, x) ≤ · · · ≤ ([
ς2 + J 2

0
]
� qLn,p

)
(t, x)

≤ ([
ς2 + J 2

0
]
� qL0,p

)
(t, x)Bn(t),

by (2.7). Now by Proposition 2.2, for all (t, x) ∈ R
∗+ ×R fixed and all m ∈ N

∗,

∞∑
i=0

∣∣Fi(t, x)
∣∣1/m ≤ ∣∣([ς2 + J 2

0
]
� qL0,p

)
(t, x)

∣∣1/m
∞∑
i=0

∣∣Bi(t)
∣∣1/m

< +∞,
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which proves that {un(t, x)}n∈N is a Cauchy sequence in Lp(	) by taking m = 2.
The moments estimates (2.21), (2.23) and (2.25) can be obtained simply by

letting n → +∞ in the conclusions (3) and (4) of the previous step and us-
ing (2.5) and (2.18). Now let us prove the Lp(	)-continuity. For all a > 0, set
Ka := [1/a, a] × [−a, a]. Since Bn(t) is nondecreasing, the above Lp(	) limit is
uniform over Ka because

∞∑
i=0

sup
(t,x)∈Ka

∣∣Fi(t, x)
∣∣1/m ≤

( ∞∑
i=0

∣∣Bi(a)
∣∣1/m

)
sup

(t,x)∈Ka

∣∣([ς2 + J 2
0
]
� qL0,p

)
(t, x)

∣∣1/m
.

By (3.10), (3.13) and the continuity of (t, x) → J ∗
0 (2t, x) over R

∗+ × R

(see Lemma 3.8), we see that the right-hand side is finite. Hence,∑∞
i=0 sup(t,x)∈Ka

|Fi(t, x)|1/m < +∞, which implies that the function (t, x) →
u(t, x) from R

∗+ × R into Lp(	) is continuous over Ka since each un(t, x) is
so. As a can be arbitrarily large, we have then proved the Lp(	)-continuity of
(t, x) → u(t, x) over R∗+ ×R.

The following inequality, which will be used in step 4, is a direct consequence
of the upper bound (4) of step 2 and (2.9):([

ς2 + ‖u‖2
p

]
� L̃0,p

)
(t, x) ≤ ([

ς2 + bpJ 2
0
]
� K̃p

)
(t, x).(3.19)

Step 4 (Verifications). Now we shall verify that {u(t, x), (t, x) ∈ R
∗+ × R} de-

fined in the previous step is indeed a solution to the stochastic integral equa-
tion (2.2) in the sense of Definition 2.1. Clearly, u is adapted and jointly-
measurable, and hence it satisfies (1) and (2) of Definition 2.1. The continuity
of the function (t, x) → u(t, x) from R

∗+ ×R into L2(R) proved in step 3, Propo-
sition 3.4 applied to Y = ρ(un) and (3.19) imply (3) of Definition 2.1. So we only
need to verify that u satisfies (4) of Definition 2.1, that is, u(t, x) satisfies (2.2)
a.s., for all (t, x) ∈ R

∗+ ×R.
We shall apply Proposition 3.4 with Y(s, y) = ρ(u(s, y)) by verifying the three

properties that it requires. Properties (i) and (ii) are satisfied by (1) and (2) in
the conclusion part of step 3. Property (iii) is also true since, by Lemma 3.7 and
also (3.19),

bpz2
p

∥∥ρ(u(·,◦))Gν(t − ·, x − ◦)∥∥2
M,p ≤ ((

ς2 + ‖u‖2
p

)
� L̃0,p

)
(t, x)

≤ ([
ς2 + bpJ 2

0
]
� K̃p

)
(t, x),

which is finite by Lemma 3.9. Hence,

ρ
(
u(·,◦))Gν(t − ·, x − ◦) ∈ Pp for all (t, x) ∈ R

∗+ ×R,

and the following Walsh integral is well defined and is an adapted random field

I (t, x) :=
∫∫

[0,t]×R

ρ
(
u(s, y)

)
Gν(t − s, x − y)W(ds,dy).
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Furthermore, by the last part of Proposition 3.4, (t, x) → I (t, x) is Lp(	)-
continuous, since by conclusion (2) of step 3, (t, x) → u(t, x) is Lp(	)-
continuous.

By step 3,

un(t, x) = J0(t, x) +
∫∫

[0,t]×R

Gν(t − s, x − y)ρ
(
un−1(s, y)

)
W(ds,dy)

with un(t, x) converging to u(t, x) in Lp(	). We only need to show that the right-
hand side converges in Lp(	) to J0(t, x) + I (t, x). In fact, by Lemma 3.3,∥∥∥∥∫∫[0,t]×R

Gν(t − s, x − y)
[
ρ
(
u(s, y)

) − ρ
(
un(s, y)

)]
W(ds,dy)

∥∥∥∥2

p

≤ z2
p Lip2

ρ

∫∫
[0,t]×R

G2
ν(t − s, x − y)

∥∥u(s, y) − un(s, y)
∥∥2
p ds dy.

Now apply Lebesgue’s dominated convergence theorem to conclude that the above
integral tends to zero as n → ∞ because (i) for all (s, y) ∈]0, t] ×R, ‖un(s, y) −
u(s, y)‖2

p → 0 as n → +∞; (ii) by step 2,∥∥un(s, y)
∥∥2
p ≤ bpJ 2

0 (s, y) + ([
ς2 + bpJ 2

0
]
� K̃p

)
(s, y),

and by step 3, the same upper bound applies to ‖u(s, y)‖2
p . Finally, by Lemma 3.9

and (2.9), the above upper bound, multiplied by G2
ν(t − s, x − y), is integrable

over [0, t] × R. This finishes the proof of the existence part of Theorem 2.4 with
the moment estimates.

Step 5 (Uniqueness). Let u and v be two solutions to (2.2) (in the sense
of Definition 2.1) with the same initial data, and denote w(t, x) := u(t, x) −
v(t, x). The L2(	)-continuity—property (3) of Definition 2.1—guarantees that
both (t, x) → u(t, x) and (t, x) → v(t, x) are L2(	)-continuous since (t, x) →
J0(t, x) is continuous by Lemma 3.8. Then w(t, x) is well defined and the func-
tion (t, x) → w(t, x) is L2(	)-continuous. Writing w(t, x) explicitly and then
taking the second moment, by Itô’s isometry and the Lipschitz condition on ρ, we
have

E
[
w(t, x)2] ≤ (

E
[
w2] �L∗

0
)
(t, x)

(3.20)
where L∗

0(t, x) := L0(t, x;ν,Lipρ).

Now we convolve both sides with respect to K∗(t, x) := K(t, x;ν,Lipρ) and
use (2.9) to obtain(

E
[
w2] �K∗)(t, x) ≤ (

E
[
w2] �L∗

0 �K∗)(t, x)

= (
E
[
w2] �K∗)(t, x) − (

E
[
w2] �L∗

0
)
(t, x).
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So (E[w2] � L∗
0)(t, x) ≡ 0, which implies by (3.20) that E[w(t, x)2] = 0 for all

(t, x) ∈ R
∗+ × R. Therefore, we conclude that for all (t, x) ∈ R

∗+ × R, u(t, x) =
v(t, x) a.s.

Step 6 (Two-point correlations). In this last step, we prove the properties (2.22),
(2.24) and (2.26) of the two-point correlation function. Let u(t, x) be the so-
lution to (2.2). Fix τ ≥ t ∈ R

∗+ and x, y ∈ R. Consider the L2(	)-martingale
{U(s; t, x), s ∈ [0, t]} defined by

U(s; t, x) := J0(t, x) +
∫ s

0

∫
R

Gν(t − r, x − z)ρ
(
u(r, z)

)
W(dr,dz).

Then U(t; t, x) = u(t, x) and E[U(s; t, x)] = J0(t, x). Similarly, we define the
martingale {U(s; τ, y), s ∈ [0, τ ]}. The mutual variation process of these two mar-
tingales is, for all s ∈ [0, t],〈
U(·; t, x),U(·; τ, y)

〉
s =

∫ s

0
dr

∫
R

dzρ2(u(r, z)
)
Gν(t − r, x − z)Gν(τ − r, y − z).

Hence, by Itô’s lemma, for every s ∈ [0, t], E[U(s; t, x)U(s; τ, y)] is equal to

J0(t, x)J0(τ, y) +
∫ s

0
dr

∫
R

dzE
[
ρ2(u(r, z)

)]
Gν(t − r, x − z)Gν(τ − r, y − z).

Finally, we choose s = t and note that E[u(t, x)u(τ, y)] = E[u(t, x)U(t; τ, y)] to
get

E
[
u(t, x)u(τ, y)

]
= J0(t, x)J0(τ, y)(3.21)

+
∫ t

0
dr

∫
R

dz
∥∥ρ(u(r, z)

)∥∥2
2Gν(t − r, x − z)Gν(τ − r, y − z).

Then (2.22), (2.24) and (2.26) follow from Lemma A.9. This completes the proof
of Theorem 2.4. �

3.4. Proofs of Corollary 2.8 and Proposition 2.11.

PROOF OF COROLLARY 2.8. In this case, J0(t, x) = Gν(t, x) and λ2J 2
0 (t,

x) = L0(t, x). So, by (2.25) and (2.9),

E
[∣∣u(t, x)

∣∣2] = 1

λ2L0(t, x) + 1

λ2 (L0 �K)(t, x) + ς2H(t),

yielding (2.31). By (2.26) [see also the equivalent formula (3.21)], E[u(t, x) ×
u(t, y)] = J0(t, x)J0(t, y) + λ2I , where

I =
∫ t

0
dr

∫
R

dz

(
ς2 + 1

λ2K(r, z) + ς2H(r)

)
Gν(t − r, x − z)Gν(t − r, y − z).
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Use Lemma A.4 to replace the last two factors by Gν/2(t −r, z−(x+y)/2)G2ν(t −
r, x − y), so that z appears in only one factor. Then use formula (2.19) and the
semigroup property of the heat kernel to see that

1

λ2

(
K(r, ·) ∗ Gν/2(t − r, ·))(x + y

2

)

= Gν/2

(
t,

x + y

2

)(
1√

4πνr
+ λ2

4ν

(
1 +H(r)

))
.

Therefore,

I =
∫ t

0
G2ν(t − r, x − y)

((
ς2 + λ2

4ν
Gν/2

(
t,

x + y

2

))(
H(r) + 1

)
+ Gν/2

(
t,

x + y

2

)
1√

4πνr

)
dr.

Then apply Lemmas A.6 and A.10 to evaluate the remaining integrals over dr .
�

PROOF OF PROPOSITION 2.11. If μ = δ′
0, then J0(t, x) = ∂

∂x
Gν(t, x) =

− x
νt

Gν(t, x). Suppose that (2.2) has a random field solution u(t, x). Fix (t, x) ∈
R

∗+ × R. Hence, by (2.2) and Itô’s isometry [see (2.4)], ‖u(t, x)‖2
2 ≥ J 2

0 (t, x).
Therefore,(

G2
ν �

∥∥ρ(u)
∥∥2

2

)
(t, x) = λ2(G2

ν � ‖u‖2
2
)
(t, x) ≥ λ2(G2

ν � J 2
0
)
(t, x).

Write out the space–time convolution and apply the formulas in Lemma A.4 to see
that it equals

Gν/2(t, x)

4πν3

∫ t

0
ds

1

s2
√

s(t − s)

∫
R

dy y2Gν/2

(
s(t − s)

t
, y − s

t
x

)

= Gν/2(t, x)

4πν3

∫ t

0

1

s2
√

s(t − s)
E

[
Z2 + s2x2

t2

]
ds,

where Z ∼ N(0, νs(t − s)/(2t)) is a Normal random variable. The expectation is

equal to νs
2 − νs2

2t
+ s2x2

t2 , and the last two terms yield a finite integral, but not the

first term, so we conclude that (G2
ν � ‖ρ(u)‖2

2)(t, x) ≥ +∞. This violates prop-
erty (3) of Definition 2.1. �

4. Upper and lower bounds on growth indices. Because the quasi-linear
case corresponds to the case where Lρ = lρ = |λ| and ς = ς = ς , part (3) of The-
orem 2.12 is a direct consequence of parts (1) and (2). Hence, in the following, we
only need to prove parts (1) and (2). We first recall a lemma.

LEMMA 4.1 ([10]). For 2 ≤ a ≤ b < +∞, λ(a) ≤ λ(b) and λ(a) ≤ λ(b).
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4.1. Proof of the lower bound. By the moment formula (2.23), we can bound
the second moment of u(t, x) from below provided we have a lower bound on
J0(t, x). The next lemma gives such a bound.

LEMMA 4.2. Assume that μ ∈ MH,+(R) and μ �= 0. For any ε > 0 and ξ ∈
]0, ν[, there exists a constant aε,ξ,ν > 0 such that

J0(t, x) ≥ aε,ξ,ν1[ε,+∞[(t)Gξ (t, x) for all t ≥ ε and x ∈R.

PROOF. It suffices to prove that

g(t, x) := J0(t, x)

Gξ (t, x)
= √

ξ/ν

∫
R

exp
(
−(x − y)2

2νt
+ x2

2ξ t

)
μ(dy)

is strictly bounded away from zero for t ∈ [ε,+∞[ and x ∈ R. Notice that for
0 < ξ < ν,

−(x − y)2

2νt
+ x2

2ξ t
= −(ξ − ν)[x − ξy/(ξ − ν)]2

2νξ t
+ y2

2(ξ − ν)t
≥ − y2

2(ν − ξ)t
.

Thus, for t ∈ [ε,+∞[,
g(t, x) ≥ √

ξ/ν

∫
R

e−y2/(2(ν−ξ)t)μ(dy) ≥ √
ξ/ν

∫
R

e−y2/(2(ν−ξ)ε)μ(dy)

=
√

2π(ν − ξ)ξε/ν
(
Gν−ξ (ε, ·) ∗ μ

)
(0) =: aε,ξ,ν,

which proves the lemma. We remark that (Gν−ξ (ε, ·) ∗ μ)(0) is strictly positive
and finite because μ ∈ MH,+(R), μ �= 0, and Gν−ξ (ε, y) > 0 for all y ∈ R. �

PROOF OF THEOREM 2.12(1). Due to Lemma 4.1, we only need to estimate
λ(2). Assume first that ς = 0. Fix ε > 0. For ξ ∈]0, ν[, use Lemma 4.2 to choose
a = aε,ξ,ν > 0 such that

J0(t, x) ≥ I0,l(t, x) := a1[ε,+∞[(t)Gξ (t, x).

By (2.8) and since �(0) = 1/2,

K(t, x) ≥ l4ρ
4ν

K(t, x) with K(t, x) := Gν/2(t, x)el4ρt/(4ν).

Set f (t, x) = E(u(t, x)2). By (2.23) and the above two inequalities, f (t, x) ≥
l4ρ
4ν

(I 2
0,l � K)(t, x). By Lemma A.4,

(
I 2

0,l � K
)
(t, x) = a2

2
√

πξ
el4ρ t/(4ν)

∫ t

ε
Gν/2

(
t − (ν − ξ)s

ν
, x

)
e−l4ρs/(4ν)

√
s

ds.
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Notice that for s ∈ [ε, t],

Gν/2

(
t − (ν − ξ)s

ν
, x

)
≥ Gξ/2(t, x)

√
ξ t

νt − (ν − ξ)ε

and ∫ t

ε

e−l4ρs/(4ν)

√
s

ds ≥ 1√
t

∫ t

ε
e−l4ρs/(4ν) ds = 4ν

l4ρ
√

t

(
e−l4ρε/(4ν) − e−l4ρ t/(4ν)).

Since t ≥ ε,

(
I 2

0,l � K
)
(t, x) ≥ 2a2√ν

l4ρ
√

πt
Gξ/2(t, x)

√
ξ t

νt − (ν − ξ)ε

(
el4ρ(t−ε)/(4ν) − 1

)
.

Thus,

lim sup
t→+∞

1

t
sup

|x|>αt

logf (t, x)

≥ lim inf
t→+∞

1

t
sup

|x|>αt

logf (t, x)

≥ lim
t→+∞

1

t
sup

|x|>αt

log
(
el4ρ(t−ε)/(4ν)Gξ/2(t, x)

) = l4ρ
4ν

− α2

ξ
.

The right-hand side is positive for α ≤ √
ξ/νl2ρ/2. Since ξ ∈]0, ν[ is arbitrary, we

conclude that λ(2) ≥ l2ρ/2.
As for the case ς �= 0, for all μ ∈MH,+(R), f (t, x) ≥ ς2H(t), and hence

lim inf
t→∞

1

t
sup

|x|≥αt

logf (t, x) ≥ lim
t→∞

1

t
log

(
ς2H(t)

) = l4ρ
4ν

> 0 for all α > 0.

Therefore, λ(2) = ∞, which implies λ(2) = ∞. This proves part (1). �

4.2. Proof of the upper bound. We need two lemmas.

LEMMA 4.3. For all t > 0, s > 0, β > 0 and x ∈R, denote

H(x;β, t, s)

:= sup
(z1,z2)∈R2

G2ν(s, z2 − z1)Gν/2

(
t, x − z1 + z2

2

)
exp

(−β|z1| − β|z2|).
Then

H(x;β, t, s) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2πν
√

ts
exp

(
−x2

νt

)
, if |x| ≤ νβt ,

1

2πν
√

ts
exp

(−2β|x| + νβ2t
)
, if |x| ≥ νβt .
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In particular, for all x ∈ R, β > 0, t > 0 and s > 0,

H(x;β, t, s) ≤ 1

2πν
√

ts
exp

(−2β|x| + νβ2t
)
.(4.1)

PROOF. We only need to maximize over (z1, z2) ∈ R
2 the exponent

−(z1 − z2)
2

4νs
− (x − (z1 + z2)/2)2

νt
− β|z1| − β|z2|.

By the change of variables u = z1−z2
2 , w = z1+z2

2 , we have that

u2

νs
+ (x − w)2

νt
+ β

(|u + w| + |u − w|) ≥ (x − w)2

νt
+ 2β|w| := f (w).

Hence, we only need to minimize f (w) for w ∈ R. Hence,

min
w∈Rf (w) =

⎧⎨⎩
x2

νt
, if |x| ≤ νβt ,

2β|x| − νtβ2, if |x| ≥ νβt .

This also implies (4.1) since x2

νt
≥ 2β|x| − νtβ2 for all x ∈ R. �

LEMMA 4.4. Suppose μ ∈ Mβ
G(R) with β > 0. Set C = ∫

R
eβ|x||μ|(dx). Let

K(t, x) = Gν/2(t, x)h(t) for some nonnegative function h(t). Then

J 2
0 (t, x) ≤ C2

2πνt
e−2β|x|+νβ2t ,(4.2)

(
J 2

0 � K
)
(t, x) ≤ C2

2πν
√

t
e−2β|x|+νβ2t

∫ t

0

h(t − s)√
s

ds.(4.3)

PROOF. Clearly,∣∣J0(t, x)
∣∣ ≤ (

sup
y∈R

Gν(t, x − y)e−β|y|)∫
R

eβ|x||μ|(dy).

The supremum is determined by minimizing (x−y)2

2νt
+ β|y| over y ∈ R, which has

been done in the proof of Lemma 4.3, and (4.2) follows. The proof of (4.3) is
similar to Lemma 3.9. By (3.15) and Lemma 4.3,(

J 2
0 � K

)
(t, x) ≤

∫ t

0
H(x;β, t, s)h(t − s)ds

∫∫
R2

eβ|z1|+β|z2||μ|(dz1)|μ|(dz2)

=
(∫

R

eβ|x||μ|(dx)

)2 ∫ t

0
H(x;β, t, s)h(t − s)ds.

Then apply (4.1). �
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Note that one can apply the bound in (3.12) to (2.21) and then Lemma 4.4 to get
λ(2) ≤ L2

ρ/
√

2. But we need a better estimate with
√

2 replaced by 2. This gap is
due to the factor 2 in J ∗

0 (2t, x) of (3.12), coming from Lemma A.5, which is not
optimal.

PROOF OF THEOREM 2.12(2). Assume that ς = 0. We first consider λ(2).
Set f (t, x) = E(u(t, x)2). Fix β > 0. Without loss of generality, assume that μ ∈
Mβ

G(R) is nonnegative; otherwise, simply replace all μ below by |μ|. By (2.8),

K(t, x) ≤ h(t)Gν/2(t, x) with h(t) = L2
ρ√

4πνt
+ L4

ρ

2ν
exp

(L4
ρt

4ν

)
,

so (2.21) implies that

f (t, x) ≤ J 2
0 (t, x) + (

J 2
0 (·,◦) � Gν/2(·,◦)h(·))(t, x).

By Lemma 4.4, (2.10) and (3.16),

f (t, x) ≤ C2

2πνt
e−2β|x|+νβ2t + C2L2

ρ

2π1/2ν3/2
√

t

(
1

2
+ eL4

ρ t/(4ν)

)
e−2β|x|+νβ2t .

Therefore, for α > 0,

sup
|x|>αt

f (t, x) ≤ C2

2πνt
eβ2νt−2βαt + C2L2

ρ

2π1/2ν3/2
√

t

(
1

2
+ eL4

ρ t/(4ν)

)
e−2βαt+νβ2t .

Now, the exponential growth rate comes from the second term, and

L4
ρt

4ν
− 2βαt + νβ2t < 0 ⇐⇒ α >

βν

2
+ L4

ρ

8νβ
.

Therefore,

λ(2) ≤ inf
{
α > 0 : lim sup

t→∞
1

t
sup

|x|>αt

logf (t, x) < 0
}

≤ βν

2
+ L4

ρ

8νβ
.

Notice that the function β → βν
2 + L4

ρ

8νβ
is decreasing for β ≤ L2

ρ

2ν
and increasing for

β ≥ L2
ρ

2ν
, with minimum value L2

ρ/ν, and Mβ
G(R) ⊆ ML2

ρ/(2ν)

G (R) for β ≥ L2
ρ

2ν
. This

yields the desired upper bound.
Now fix an even integer p ≥ 2. Because the definition of λ(p) differs from that

of λ(2) by the use of ‖u(t, x)‖2
p , we only need to make the following changes in the

above proof: (1) Replace f (t, x) by ‖u(t, x)‖2
p . (2) As in (2.21), replace J 2

0 (t, x)

by 2J 2
0 (t, x). (3) Replace K(t, x) by K̃p(t, x), which is equivalent to replacing Lρ

everywhere by
√

2zpLρ . This proves (2). �



3040 L. CHEN AND R. C. DALANG

FIG. 1. The dashed lines in both figures denote the graph of eβ|x|. The solid lines from bottom
to top are Ea,β(x) with the parameter a ranging from 1 to 6 for Figure 1(a) and from 6 to 1 for
Figure 1(b), which are representative of the cases β > 0 and β < 0, respectively. The parameter β

controls the asymptotic behavior near infinity while both a and β determine how the function eβ|x|
is smoothed at zero. The smaller a is, the closer Ea,β(0) is to 1.

4.3. Proof of Proposition 2.14. For a > 0 and β ∈ R, define

Ea,β(x) := e−βx�

(
aβ − x√

a

)
+ eβx�

(
aβ + x√

a

)
,(4.4)

which is a smooth version of the continuous function eβ|x| (see Figure 1). Equiva-
lently, by Proposition A.11(ii),

Ea,β(x) = e−β2a/2(eβ|·| ∗ Ga(1, ·))(x).(4.5)

Note that the function (eβ|·| ∗ Gν(t, ·))(x) is the solution to the homogeneous heat
equation (2.1) with initial condition μ(dx) = eβ|x| dx. See Proposition A.11 below
for its properties.

Recall ([24], Equation 7.12.1) that

1 − �(x) ∼ e−x2/2
√

2πx
as x → +∞ and

(4.6)

�(x) ∼ e−x2/2
√

2π |x| as x → −∞.

PROOF OF PROPOSITION 2.14. The fact that λ(2) is bounded above by

the expression in (2.33) follows from Theorem 2.12 since μ ∈ Mβ ′
G,+(R), for

any β ′ < β . We now establish the corresponding lower bound on λ(2). Set
f (t, x) = E(u(t, x)2). If μ(dx) = e−β|x| dx with β > 0, then by (4.5), J0(t, x) =
eβ2νt/2Eνt,−β(x) and by Proposition A.11(iv),

J 2
0 (t, x) ≥ eβ2νt�2(−β

√
νt)Eνt,−2β(x).(4.7)
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By (4.5) and the lower bound in (4.7),

J 2
0 (t, x) ≥ e−β2νt�2(−β

√
νt)

(
e−2β|·| ∗ Gν(t, ·))(x).

Thus, by (2.25) and the fact that K(t, x) ≥ λ4

4ν
Gν/2(t, x) exp(λ4t

4ν
),

f (t, x) ≥
∫ t

0
e−β2ν(t−s)�2(−β

√
ν(t − s)

)λ4

4ν

× eλ4s/(4ν)

(
e−2β|·| ∗ Gν

(
t − s

2
, ·
))

(x)ds.

Noticing that by Proposition A.11(ii) and (vi),(
e−2β|·| ∗ Gν

(
t − s

2
, ·
))

(x)

= e2β2ν(t−s/2)Eν(t−s/2),−2β(x) ≥ e2β2ν(t−s/2)Eνt/2,−2β(x),

we have that

f (t, x) ≥ Eνt/2,−2β(x)eβ2νt
∫ t

0

λ4

4ν
�2(−β

√
ν(t − s)

)
eλ4s/(4ν) ds.

Choose an arbitrary constant c ∈ [0,1[. The integral above is bounded by∫ t

0

λ4

4ν
�2(−β

√
ν(t − s)

)
eλ4s/(4ν) ds ≥ �2(−β

√
ν(1 − c)t

) ∫ t

ct

λ4

4ν
eλ4s/(4ν) ds

= �2(−β
√

ν(1 − c)t
)(

eλ4t/(4ν) − ecλ4t/(4ν)).
Hence,

f (t, x) ≥ Eνt/2,−2β(x)eβ2νt�2(−β
√

ν(1 − c)t
)(

eλ4t/(4ν) − ecλ4t/(4ν)).
By Proposition A.11(v), for α > 0,

sup
|x|>αt

Eνt/2,−2β(x) = Eνt/2,−2β(αt).

Notice that

Eνt/2,−2β(αt)

= e2βαt�

(
−
[
2β

√
ν

2
+ α

√
2

ν

]√
t

)
+ e−2βαt�

([
α

√
2

ν
− 2β

√
ν

2

]√
t

)
.

If α
√

2
ν
−2β

√
ν
2 ≥ 0, that is, α ≥ βν, then by (4.6), the second term dominates and

so for large t ,

Eνt/2,−2β(αt) ≥ 1
4e−2βαt .
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Otherwise, if α < βν, then by (4.6), for large t ,

e±2βαt�

(
∓
[

α√
ν/2

± 2β
√

ν/2
]√

t

)
≈

√
ν exp{−(β2ν + α2/ν)t}

2
√

π |α ± βν|√t
.

So Eνt/2,−2β(αt) has a lower bound with the exponent −2βαt if α ≥ βν,
and −(β2ν + α2/ν)t if α < βν. For large t , by (4.6), the function t →
�2(−β

√
ν(1 − c)t) contributes to an exponent β2ν(c − 1)t . Therefore,

lim
t→∞

1

t
sup

|x|>αt

logf (t, x) ≥

⎧⎪⎪⎨⎪⎪⎩
cβ2ν + λ4

4ν
− 2βα, if α ≥ βν,

(c − 1)β2ν + λ4

4ν
− α2

ν
, if α < βν.

We now consider two cases. First, suppose that β < λ2

2ν
√

2−c
. This inequality is

equivalent to cνβ
2 + λ4

8νβ
> βν, and

cβ2ν + λ4

4ν
− 2βα > 0 ⇔ α <

cνβ

2
+ λ4

8νβ
.

Therefore, λ(2) ≥ cνβ
2 + λ4

8νβ
in this first case. Second, suppose that β ≥ λ2

2ν
√

2−c
.

This inequality is equivalent to
√

λ4

4 + (c − 1)β2ν2 ≤ βν, and

(c − 1)β2ν + λ4

4ν
− α2

ν
> 0 ⇔ α <

√
λ4

4
+ (c − 1)β2ν2.

Therefore, λ(2) ≥
√

λ4

4 + (c − 1)β2ν2 in this second case.
Finally, since the constant c can be arbitrarily close to 1, this completes the

proof. �

APPENDIX

LEMMA A.1. π
∫ t

0 eπb2u�(
√

2πb2u)du = eπb2t�(
√

2πb2t)

b2 − 1
2b2 −

√
t

b
, b �= 0.

PROOF. By integration by parts, the left-hand side equals eπb2u�(
√

2πb2u)

b2 |u=t
u=0 −

1
b2

∫ t
0

b
2
√

s
ds. �

LEMMA A.2. For 0 < a < b, we have that
log(b/a)

b − a
≥ 1

b
.(A.1)

The function f (s) = (a − s)(b − s) log b−s
a−s

is nonincreasing over s ∈ [0, a[ with
infs∈[0,a[ f (s) = lims→a f (s) = (b − a) log(b − a) and sups∈[0,a[ f (s) = f (0) =
ab log(b/a).
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PROOF. Note that (A.1) is equivalent to the following statements:

− log s

1 − s
≥ 1, s ∈]0,1[ ⇐⇒ s − log s ≥ 1, s ∈]0,1[.

Let g(s) = s − log s with s ∈]0,1[. Then g(s) is nonincreasing since g′(s) = (s −
1)/s < 0 for s ∈]0,1[. So g(s) ≥ lims→1 g(s) = 1. This proves (A.1). As for the
function f (s), we only need to show that

f ′(s) = (b − a) − (a + b − 2s) log
b − s

a − s
≤ 0 for all s ∈ [0, a[.

Let g(s) = b−a
a+b−2s

− log b−s
a−s

. Then the above statement is equivalent to the in-
equality g(s) ≤ 0 for all s ∈ [0, a[. By (A.1), we know that

g(0) = b − a

a + b
− log

b

a
≤ (b − a)

(
1

a + b
− 1

b

)
≤ 0.

So it suffices to show that

g′(s) = 2(b − a)

(a + b − 2s)2 + 1

b − s
− 1

a − s
≤ 0 for all s ∈ [0, a[.

After simplifications, this statement is equivalent to

s2 − (a + b)s + a2 + b2

2
≥ 0 for all s ∈ [0, a[,

which is clearly true since the discriminant is −(a + b)2 < 0. This completes the
proof. �

PROPOSITION A.3. Fix (t, x) ∈ R
∗+ ×R. Set

Bt,x = {(
t ′, x′) ∈R

∗+ ×R : 0 < t ′ ≤ t + 1
2 , and

∣∣x′ − x
∣∣ ≤ 1

}
.

Then there exists a = at,x > 0 such that for all (t ′, x′) ∈ Bt,x , s ∈ [0, t ′] and
|y| ≥ a,

Gν

(
t ′ − s, x′ − y

) ≤ Gν(t + 1 − s, x − y).

PROOF. Since t + 1 − s is strictly larger than t ′ − s, the function y → Gν(t +
1 − s, x − y) has heavier tails than y → Gν(t

′ − s, x′ − y). Solve the inequality
Gν(t + 1 − s, x − y) ≥ Gν(t

′ − s, x′ − y) with t, t ′, x, x′ and s fixed, which is a
quadratic inequality for y:

−(x′ − y)2

t ′ − s
+ (x − y)2

t + 1 − s
≤ ν log

(
t ′ − s

t + 1 − s

)
.
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Let y±(t, x, t ′, x′, s) be the two solutions of the corresponding quadratic equation,
which are

1

t + 1 − t ′
(
(t + 1 − s)x′ − x

(
t ′ − s

)
±

[
(t + 1 − s)

(
t ′ − s

)
×

{(
x − x′)2 + (

t + 1 − t ′
)
ν log

(
t + 1 − s

t ′ − s

)}]1/2)
.

Then a sufficient condition for the above inequality is |y| ≥ |y+| ∨ |y−|. So we
only need to show that

sup
(t ′,x′)∈Bt,x

sup
s∈[0,t ′]

∣∣y+
(
t, x, t ′, x′, s

)∣∣ ∨ ∣∣y−
(
t, x, t ′, x′, s

)∣∣ < +∞.

By Lemma A.2, the supremum over s ∈ [0, t ′] of the quantity under the square root
is

t ′(t + 1)

[(
x − x′)2 + (

t + 1 − t ′
)
ν log

t + 1

t ′
]
,

so, using the fact that |x′ − x| ≤ 1, we see that

|y+| ∨ |y−|

≤ (t + 1)(|x| + 1) + |x|t ′ + [t ′(t + 1){1 + (t + 1 − t ′)ν log((t + 1)/t ′)}]1/2

t + 1 − t ′
.

Finally, because t ′ ∈ [0, t + 1/2], this right-hand side is bounded above by

2(t + 1)
(|x| + 1

) + |x|(2t + 1)

+ 2
[
(t + 1)

(
(t + 1/2) + t ′(t + 1)ν log

(
t + 1

t ′
))]1/2

< (4t + 3)
(|x| + 1

) + 2(t + 1)
√

1 + ν/e =: a,

since sups≥0 s log t
s
= s log t

s
|s=t/e = t

e
for all t > 0. This completes the proof. �

LEMMA A.4. For all t , s > 0 and x, y ∈ R, we have that G2
ν(t, x) =

1√
4πνt

Gν/2(t, x) and Gν(t, x)Gν(s, y) = Gν(
ts

t+s
,

sx+ty
t+s

)Gν(t + s, x − y).

The proof of this lemma is straightforward and is left to the reader.

LEMMA A.5. For all x, z1, z2 ∈ R and t, s > 0, denote z̄ = z1+z2
2 , �z = z1 −

z2. Then G1(t, x − z̄)G1(s,�z) ≤ (4t)∨s√
ts

G1((4t) ∨ s, x − z1)G1((4t) ∨ s, x − z2),
where a ∨ b := max(a, b).
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PROOF. Since (z2 − z1)
2 + [(x − z1) + (x − z2)]2 ≥ (x − z1)

2 + (x − z2)
2,

G1(t, x − z̄)G1(s,�z) ≤ 1

2π
√

ts
e−([(x−z1)+(x−z2)]2+(z1−z2)

2)/(2((4t)∨s)). �

LEMMA A.6.
∫ t

0 (H(r) + 1)G2ν(t − r, x)dr = 1
λ2 (e(λ4t−2λ2|x|)/(4ν) ×

erfc( |x|−λ2t

2
√

νt
) − erfc( |x|

2
√

νt
)), t ≥ 0.

PROOF. Let μ = λ4

4ν
. By [18], (27) on page 146] and [18], (5) on page 176, the

Laplace transform of the convolution equals

L
[
G2ν(·, x)

]
(z)L

[
H(·) + 1

]
(z)

= 1√
4ν

1√
z
e−|x|√z/

√
ν

(
1

z − μ
+

√
μ√

z(z − μ)

)
exp(−(|x|/√ν)

√
z)√

4νz(
√

z − μ)
.

Then apply the inverse Laplace transform (see [18], (14) on page 246). �

LEMMA A.7.
∫ t

0 dr
|x|e−x2/(4νr)+(t−r)/(4ν)√

πνr3
�(

√
t−r
2ν

) = exp(
t−2|x|

4ν
)erfc( |x|−t√

4νt
), for

all t ≥ 0 and x �= 0.

PROOF. Suppose that x �= 0. Denote the integral by I (t). Let

f (t) = |x|√
πνt3

e−x2/(4νt) and g(t) = et/(4ν)�
(√

(2ν)−1t
)
.

Clearly, I (t) is the convolution of f and g. By [18], (28) on page 146,

L[f ](z) = 2 exp
(−|x|√z/ν

)
.

Notice g(t) = (H(t) + 1)/2 with H(t) = H(t;ν,1). By the calculations in
Lemma A.6,

L[g](z) = 1

2(z − 1/(4ν))
+ 1

4
√

νz(z − 1/(4ν))
.

Hence,

L[I ](z) = L[f ](z)L[g](z) = e−|x|√z/ν

√
z(

√
z − 1/(2

√
ν))

.

Then apply the inverse Laplace transform (see [18], (16) on page 247). �

LEMMA A.8. (2.32) equals Gν(t, x)Gν(t, y) + 1
4ν

Gν/2(t,
x+y

2 ) ×
exp(

t−2|x−y|
4ν

)erfc( |x−y|−t√
4νt

).
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PROOF. After some simplifications, the integral in (2.32) is equal to the fol-
lowing integral:

1

4πνt
Gν/2

(
t,

x + y

2

)∫ 1

0
ds

|x − y|√
s3

exp
(
−(x − y)2

4νts

)

×
(

1√
1 − s

+ √
πt/ν exp

(
t (1 − s)

4ν

)
�

(√
t (1 − s)

2ν

))
.

Denote this integral by I1(1) + I2(1). Suppose that x �= y and let

f (s) = |x − y|
s3/2 exp

(
−(x − y)2

4νts

)
, g(s) = 1√

s
,

h(s) =
√

πt√
ν

exp
(

ts

4ν

)
�

(√
ts

2ν

)
.

Then by [18], (28) on page 146, and [18], page 135,

L[I1](z) = L[f ](z)L[g](z) = 2π
√

νt
exp(−|x − y|√z/

√
νt)√

z
.

Apply the inverse Laplace transform (see [18], (6) on page 246),

I1(s) = 2
√

πνt√
s

exp
(
−(x − y)2

4νst

)
for s > 0.

As for I2(s), by the calculation in Lemma A.7,

L[h](z) =
√

πt

2
√

ν

(
1

z − t/(4ν)
+

√
t

2
√

νz(z − t/(4ν))

)
.

Hence,

L[I2](z) = L[f ](z)L[h](z) = πte−|x−y|√z/
√

νt 1√
z(

√
z − √

t/(4ν))
.

Then apply the inverse Laplace transform (see [18], (16) on page 247). Finally, let
s = 1 and use Lemma A.4. �

LEMMA A.9. For ν > 0, τ ≥ t ≥ 0 and x, y ∈ R,∫ τ

t
Gν(r, x)dr = 2|x|

ν

(
�

( |x|√
ντ

)
− �

( |x|√
νt

))
+ 2τGν(τ, x) − 2tGν(t, x)

and ∫ t

0
dr

∫
R

dzGν(t − r, x − z)Gν(τ − r, y − z)

= |x − y|
ν

(
�

( |x − y|√
ν(τ + t)

)
− �

( |x − y|√
ν(τ − t)

))
+ (τ + t)Gν(τ + t, x − y) − (τ − t)Gν(τ − t, x − y).
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PROOF. Consider the first integral. The case where x = 0 is straightforward,
so we assume that x �= 0. This right-hand side is obtained by a change variable and
integration by parts:∫ τ

t
Gν(r, x)dr = 2|x|

ν

∫ |x|/√νt

|x|/√ντ

1√
2πu2

e−u2/2 du

= 2|x|
ν

(
e−u2/2
√

2πu

∣∣∣∣|x|/√ντ

|x|/√νt

−
∫ |x|/√νt

|x|/√ντ

e−u2/2
√

2π
du

)
.

For the second integral, use the semigroup property to integrate over z, and then
apply the first integral. �

LEMMA A.10. For t ≥ 0 and x, y ∈ R, we have that∫ t

0
Gν(r, x)Gσ (t − r, y)dr = 1

2
√

νσ
erfc

(
1√
2t

( |x|√
ν

+ |y|√
σ

))
,

where ν and σ are strictly positive. In particular, by letting x = 0, we have that∫ t

0

Gσ(t − r, y)√
2πνr

dr = 1

2
√

νσ
erfc

( |y|√
2σ t

)
≤

√
πt√
2ν

Gσ (t, y).

PROOF. By [18], (27) on page 146, the Laplace transform of the integrand is

L
[
Gν(·, x)

]
(z) ·L[

Gσ(·, y)
]
(z) = exp(−√

2z(|x|/√ν + |y|/√σ))

2
√

νσz2
,

and the conclusion follows by applying the inverse Laplace transform (see [18],
(3) on page 245). As for the special case x = 0, use formula [24], (Equation 7.7.1,
page 162) to write

erfc(x) = 2

π
e−x2

∫ ∞
0

e−x2r2

1 + r2 dr ≤ 2

π
e−x2

∫ ∞
0

1

1 + r2 dr = e−x2
. �

PROPOSITION A.11 [Properties of Ea,β(x), defined in (4.5)]. For a > 0 and
β ∈ R,

(i) Ea,0(x) = 1;
(ii) for ν > 0, (eβ|·| ∗ Gν(t, ·))(x) = eβ2νt/2Eνt,β(x);

(iii) first and second derivatives:

E′
a,β(x) = −βe−βx�

(
aβ − x√

a

)
+ βeβx�

(
aβ + x√

a

)
,

E′′
a,β(x) = β

√
2

πa
e−(a2β2+x2)/(2a) + β2Ea,β(x);
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(iv) for β > 0, eβ|x| ≤ Ea,β(x) < eβx + e−βx ; for β < 0, �(
√

aβ)E
1/2
a,2β(x) ≤

Ea,β(x) ≤ e−|βx|;
(v) for β > 0, x → Ea,β(x) is strictly convex and infx∈R Ea,β(x) = Ea,β(0) =

2�(β
√

a) > 1, with E′′
a,β(0) = β

√
2

πa
e−β2a/2 + 2β2�(β

√
a) > 0; for β < 0, the

function Ea,β(x) is decreasing for x ≥ 0 and increasing for x ≤ 0, and it therefore
achieves its global maximum at zero: supx∈R Ea,β(x) = Ea,β(0) = 2�(β

√
a) < 1,

with E′′
a,β(0) = β

√
2

πa
e−β2a/2 + 2β2�(β

√
a) ≤ 0;

(vi) concerning a → Ea,β(x),

∂Ea,β(x)

∂a
= β√

2πa
exp

(
−a2β2 + x2

2a

)
.

Hence, for all x ∈ R, then the function a → Ea,β(x) is nondecreasing for β > 0
and nonincreasing for β < 0.

PROOF. (i) Is trivial. (ii) Follows from a direct calculation. (iii) Is routine.
We now prove (iv). Suppose that β < 0. We first prove the upper bound. Since
x → Ea,β(x) is an even function, we shall only consider x ≥ 0. We need to show
that for x ≥ 0

e−βx�

(
aβ − x√

a

)
+ eβx�

(
aβ + x√

a

)
≤ eβx

or equivalently from the fact that 1 − �(
aβ+x√

a
) = �(

−aβ−x√
a

),

F(x) := eβx�

(−aβ − x√
a

)
− e−βx�

(
aβ − x√

a

)
≥ 0.

This is true since

F ′(x) = βeβx�

(−aβ − x√
a

)
+ βe−βx�

(
aβ − x√

a

)
≤ 0

and limx→+∞ F(x) = 0 by applying l’Hôpital’s rule. Note that F(0) =
�(−√

aβ) − �(
√

aβ) > 0 since β < 0.
As for the lower bound, when β < 0, we have that

E2
a,β(x) =

[
e−βx�

(
aβ − x√

a

)
+ eβx�

(
aβ + x√

a

)]2

≥ e−2|βx|�2
(

aβ + |x|√
a

)
≥ e−2|βx|�2(

√
aβ).

Then the lower bound follows from the fact that e−2|βx| ≥ Ea,2β(x). As for the
first part of (iv) where β > 0, the upper bound holds since �(·) < 1. The lower
bound is a consequence of the upper bound with β < 0 and the equality Ea,β(x) =
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eβx + e−βx − Ea,−β(x), which follows from (4.4). Now consider (v). We first
consider the case β > 0. By (iii), E′′

a,β(x) > 0 for all x ∈ R, hence x → Ea,β(x) is
strictly convex. By (4.5),

d

dx
Ea,β(x) = βe−aβ2/2

∫ ∞
0

eβy(Ga(1, x − y) − Ga(1, x + y)
)

dy.

Clearly, if x ≥ (≤)0, then Ga(1, x − y) − Ga(1, x + y) ≥ (≤)0 for all y ≥ 0.
Hence, d

dx
Ea,β(x) ≥ (≤)0 if x ≥ (≤)0 and the global minimum is achieved at

x = 0. Similarly, for β < 0, we have d
dx

Ea,β(x) ≤ (≥)0 if x ≥ (≤)0 and the global
maximum is taken at x = 0, which then implies that E′′

a,β(0) ≤ 0 [note that by (iii),
E′′

a,β(x) exists]. As for (vi),

∂

∂a
e∓βx�

(
aβ ∓ x√

a

)
= aβ ± x

2a3/2
√

2π
exp

(
−a2β2 + x2

2a

)
.

Adding these two terms proves the formula for ∂Ea,β(x)

∂a
. The rest is clear. �
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